
AsciiDoc User Guide
Stuart Rackham <srackham@methods.co.nz>

Revision History
Revision 8.2.5 18 November 2007 SJR

Table of Contents
Introduction ..4
Getting Started ...4

Installing AsciiDoc ..5
Example AsciiDoc Documents ..5

AsciiDoc Document Types ..5
article ..5
book ..5
manpage ...6

AsciiDoc Backends ..6
docbook ..6
xhtml11 ..6
html4 ..9
linuxdoc ..9
latex ..9

Document Structure ...9
Block Elements ..10
Header ..10
Preamble ..11
Sections ..11
Inline Elements ..12

Document Processing ...13
Text Formatting ...14

Quoted Text ...14
Inline Passthroughs ..15
Superscripts and Subscripts ...16
Line Breaks (HTML/XHTML) ..16
Rulers (HTML/XHTML) ...16
Tabs ..16
Replacements ...16
Special Words ..17

Titles ..17
Two line titles ..17
One line titles ...17

BlockTitles ...18
BlockId Element ..18
Paragraphs ..18

Default Paragraph ..19
Literal Paragraph ..19
Admonition Paragraphs ...19

Delimited Blocks ...20
Predefined Delimited Blocks ...20

1

Listing Blocks ..21
Literal Blocks ...21
SidebarBlocks ..22
Comment Blocks ..23
Passthrough Blocks ..23
Quote Blocks ..23
Example Blocks ...24
Admonition Blocks ..25

Lists ..25
Bulleted and Numbered Lists ...26
Vertical Labeled Lists ..27
Horizontal Labeled Lists ..28
Question and Answer Lists ..29
Glossary Lists ...30
Bibliography Lists ..30
List Item Continuation ...31
List Block ...32

Footnotes ..33
Indexes ...33
Callouts ..34

Implementation Notes ..35
Including callouts in included code ...35

Macros ..36
Inline Macros ...36
Block Macros ...39
System Macros ...40
Macro Definitions ..43

Tables ...43
Example Tables ..43
AsciiDoc Table Block Elements ..46

Manpage Documents ...49
Document Header ..49
The NAME Section ..49
The SYNOPSIS Section ..50

Configuration Files ..50
Configuration File Format ...50
Markup Template Sections ..50
Special Sections ...51
Configuration File Names and Locations ..56

Document Attributes ..58
Attribute Entries ...58
Attribute Lists ..59

Macro Attribute lists ..60
AttributeList Element ...60

Attribute References ..60
Simple Attributes References ..61
Conditional Attribute References ..61
System Attribute References ..62

Intrinsic Attributes ...63
Block Element Definitions ...64

Styles ..65
Paragraphs ..65
Delimited Blocks ...66
Lists ..67

AsciiDoc User Guide

2

Tables ...68
Filters ...69

Filter Search Paths ...69
Filter Configuration Files ...69
Code Filter ...70
Source Code Highlighter Filter ..70
Music Filter ..70

Converting DocBook to other file formats ..71
a2x Toolchain Wrapper ..72
Toolchain Components ..72
AsciiDoc DocBook XSL Drivers ...73
FOP ..74

Generating Plain Text Files ...74
XML and Character Sets ..74

PDF Fonts ..75
Help Commands ...75

Customizing Help ..75
Tips and Tricks ..75

Know Your Editor ..75
Vim Commands for Formatting AsciiDoc ...75
Troubleshooting ...77
Gotchas ..77
Combining Separate Documents ..78
Processing Document Sections Separately ..79
Processing Document Chunks ...79
Badges in HTML Page Footers ..80
Pretty Printing AsciiDoc Output ..80
Supporting Minor DocBook DTD Variations ..80
Shipping Stand-alone AsciiDoc Source ...80
Inserting Blank Space ..81
Closing Open Sections ...81
Validating Output Files ..81

Glossary ...81
A. Migration Notes ..82

Version 7 to version 8 ..82
Version 6 to version 7 ..82

B. Packager Notes ..83
C. AsciiDoc Safe Mode ...84
D. Installing FOP on Windows ..84
E. Installing FOP on Linux ..85
F. Installing Java on Windows ...86
G. Installing Java on Linux ..86
H. Using AsciiDoc with non-English Languages ..86
I. ASCIIMathML Support ..87
J. Vim Syntax Highlighter ...88

Limitations ...88

AsciiDoc is a text document format for writing short documents, articles, books and UNIX man pages.
AsciiDoc files can be translated to HTML and DocBook markups using the asciidoc(1) command.
AsciiDoc is highly configurable: both the AsciiDoc source file syntax and the backend output markups
(which can be almost any type of SGML/XML markup) can be customized and extended by the user.

AsciiDoc User Guide

3

Introduction

This is an overly large document, it probably needs to be refactored into a Tutorial, FAQ, Quick
Reference and Formal Reference.

If you're new to AsciiDoc read this section and the Getting Started section and take a look at the
example AsciiDoc *.txt source files in the distribution doc directory.

Plain text is the most universal electronic document format, no matter what computing environment you
use, you can always read and write plain text documentation. But for many applications plain text is not a
viable presentation format. HTML, PDF and roff (roff is used for man pages) are the most widely used
UNIX presentation formats. DocBook is a popular UNIX documentation markup format which can be
translated to HTML, PDF and other presentation formats.

AsciiDoc is a plain text human readable/writable document format that can be translated to DocBook or
HTML using the asciidoc(1) command. You can then either use asciidoc(1) generated HTML
directly or run asciidoc(1) DocBook output through your favorite DocBook toolchain or use the
AsciiDoc a2x(1) toolchain wrapper to produce PDF, man page, HTML and other presentation formats.

The AsciiDoc format is a useful presentation format in its own right: AsciiDoc files are unencumbered by
markup and are easily viewed, proofed and edited.

AsciiDoc is light weight: it consists of a single Python script and a bunch of configuration files. Apart
from asciidoc(1) and a Python interpreter, no other programs are required to convert AsciiDoc text files
to DocBook or HTML. See Example AsciiDoc Documents below.

You write an AsciiDoc document the same way you would write a normal text document, there are no
markup tags or arcane notations. Built-in AsciiDoc formatting rules have been kept to a minimum and are
reasonably obvious.

Text markup conventions tend to be a matter of (often strong) personal preference: if the default syntax is
not to your liking you can define your own by editing the text based asciidoc(1) configuration files.
You can create your own configuration files to translate AsciiDoc documents to almost any SGML/XML
markup.

asciidoc(1) comes with a set of configuration files to translate AsciiDoc articles, books or man pages to
HTML or DocBook backend formats.

My AsciiDoc Itch

DocBook has emerged as the defacto standard Open Source documentation format. But DocBook
is a complex language, the marked up text is difficult to read and even more difficult to write
directly — I found I was spending more time typing markup tags, consulting reference manuals
and fixing syntax errors, than I was writing the documentation.

Getting Started

AsciiDoc User Guide

4

Installing AsciiDoc
See the README and INSTALL files for install prerequisites and procedures. Packagers take a look at
Appendix B: Packager Notes.

Example AsciiDoc Documents
The best way to quickly get a feel for AsciiDoc is to view the AsciiDoc web site and/or distributed
examples:

• Take a look at the linked examples on the AsciiDoc web site home page
http://www.methods.co.nz/asciidoc/. Press the Page Source sidebar menu item to view corresponding
AsciiDoc source.

• Read the *.txt source files in the distribution ./doc directory in conjunction with the corresponding
HTML and DocBook XML files.

AsciiDoc Document Types
There are three types of AsciiDoc documents: article, book and manpage. All document types share the
same AsciiDoc format with some minor variations.

Use the asciidoc(1) -d (—doctype) option to specify the AsciiDoc document type — the default
document type is article.

By convention the .txt file extension is used for AsciiDoc document source files.

article
Used for short documents, articles and general documentation. See the AsciiDoc distribution
./doc/article.txt example.

book
Books share the same format as articles; in addition there is the option to add level 0 book part sections.

Book documents will normally be used to produce DocBook output since DocBook processors can
automatically generate footnotes, table of contents, list of tables, list of figures, list of examples and
indexes.

AsciiDoc markup supports standard DocBook frontmatter and backmatter special sections (dedication,
preface, bibliography, glossary, index, colophon) plus footnotes and index entries.

Example book documents

Book
The ./doc/book.txt file in the AsciiDoc distribution.

AsciiDoc User Guide

5

http://www.methods.co.nz/asciidoc/

Multi-part book
The ./doc/book-multi.txt file in the AsciiDoc distribution.

manpage
Used to generate UNIX manual pages. AsciiDoc manpage documents observe special header title and
section naming conventions — see the Manpage Documents section for details.

See also the asciidoc(1) man page source (./doc/asciidoc.1.txt) from the AsciiDoc distribution.

AsciiDoc Backends
The asciidoc(1) command translates an AsciiDoc formatted file to the backend format specified by the
-b (—backend) command-line option. asciidoc(1) itself has little intrinsic knowledge of backend
formats, all translation rules are contained in customizable cascading configuration files.

AsciiDoc ships with the following predefined backend output formats:

docbook
AsciiDoc generates the following DocBook document types: article, book and refentry (corresponding to
the AsciiDoc article, book and manpage document types).

DocBook documents are not designed to be viewed directly. Most Linux distributions come with
conversion tools (collectively called a toolchain) for converting DocBook files to presentation formats
such as Postscript, HTML, PDF, DVI, roff (the native man page format), HTMLHelp, JavaHelp and text.

• The —backend=docbook command-line option produces DocBook XML. You can produce the older
DocBook SGML format using the —attribute sgml command-line option.

• Use the optional encoding attribute to set the character set encoding.

• Use the optional imagesdir attribute to prepend to the target file name paths in image inline and block
macros. Defaults to a blank string.

• The AsciiDoc Preamble element generates a DocBook book preface element although it's more usual to
use an explicit Preface special section (see the ./doc/book.txt example book).

xhtml11
The default asciidoc(1) backend is xhtml11 which generates XHTML 1.1 markup styled with CSS2.
Default output file have a .html extension. xhtml11 document generation is influenced by the following
optional attributes (the default behavior is to generate XHTML with no section numbers, embedded CSS
and no linked admonition icon images):

numbered
Adds section numbers to section titles.

AsciiDoc User Guide

6

toc
Adds a table of contents to the start of the document.

• JavaScript needs to be enabled in your browser for this to work.

• By default AsciiDoc automatically embeds the required toc.js JavaScript in the output document
— use the linkcss attribute to link the script.

• The following example generates a numbered table of contents by embedding the toc.js script in
the mydoc.html output document (to link the script to the output document use the linkcss and
scriptsdir attributes):

$ asciidoc -a toc -a numbered mydoc.txt

toclevels
Sets the number of title levels (1..4) reported in the table of contents (see the toc attribute above).
Defaults to 2 and must be used with the toc attribute. Example usage:

$ asciidoc -a toc -a toclevels=3 doc/asciidoc.txt

linkcss
Link CSS stylesheets and JavaScripts (see the stylesdir and scriptsdir attributes below). By default
linkcss is undefined in which case stylesheets and scripts are automatically embedded in the output
document.

stylesdir
The name of the directory containing linked stylesheets. Defaults to . (the same directory as the
linking document).

scriptsdir
The name of the directory containing linked JavaScripts. Defaults to . (the same directory as the
linking document).

icons
Link admonition paragraph and admonition block icon images and badge images. By default icons is
undefined and text is used in place of icon images.

iconsdir
The name of the directory containing linked admonition and navigation icons. Defaults to
./images/icons.

imagesdir
This attribute is prepended to the target image file name paths in image inline and block macros.
Defaults to a blank string.

theme
Use alternative stylesheets (see Stylesheets).

badges
Link badges (XHTML 1.1, CSS and Get Firefox!) in document footers. By default badges are omitted

AsciiDoc User Guide

7

badges is undefined).

The path names of images, icons and scripts are relative to the output document not the source
document.

encoding
Set the input and output document character set encoding. For example the —attribute

encoding=ISO-8859-1 command-line option will set the character set encoding to ISO-8859-1.

• The default encoding is UTF-8.

• This attribute specifies the character set in the output document.

• The encoding name must correspond to a Python codec name or alias.

• The encoding attribute can be set using an AttributeEntry inside the document header but it must
come at the start of the document before the document title. For example:

:encoding: ISO-8859-1

quirks
Use the xhtml11-quirks.css stylesheet to work around IE6 browser incompatibilities (this is the
default behavior).

Stylesheets

AsciiDoc XHTML output is styled using CSS2 stylesheets from the distribution ./stylesheets/

directory.

All browsers have CSS quirks, but Microsoft's IE6 has so many omissions and errors that the
xhtml11-quirks.css stylesheet and xhtml11-quirks.conf configuration files are included
during XHTML backend processing to to implement work-arounds for IE6. If you don't use
IE6 then the quirks stylesheet and configuration files can be omitted using the —attribute

quirks! command-line option.

Default xhtml11 stylesheets:

./stylesheets/xhtml11.css

The main stylesheet.

./stylesheets/xhtml11-manpage.css

Tweaks for manpage document type generation.

./stylesheets/xhtml11-quirks.css

Stylesheet modifications to work around IE6 browser incompatibilities.

AsciiDoc User Guide

8

Use the theme attribute to select and alternative set of stylesheets. For example, the command-line option
-a theme=foo will use stylesheets foo.css, foo-manpage.css and foo-quirks.css.

html4
This backend generates plain (unstyled) HTML 4.01 Transitional markup.

linuxdoc

The AsciiDoc linuxdoc backend is still distributed but is no longer being actively developed or
tested with new AsciiDoc releases (the last supported release was AsciiDoc 6.0.3).

• Tables are not supported.

• Images are not supported.

• Callouts are not supported.

• Horizontal labeled lists are not supported.

• Only article document types are allowed.

• The Abstract section can consist only of a single paragraph.

• An AsciiDoc Preamble is not allowed.

• The LinuxDoc output format does not support multiple labels per labeled list item although LinuxDoc
conversion programs generally output all the labels with a warning.

• Don't apply character formatting to the link macro attributes, LinuxDoc does not allow displayed link
text to be formatted.

The default output file name extension is .sgml.

latex
An experimental LaTeX backend has been written for AsciiDoc by Benjamin Klum. A tutorial
./doc/latex-backend.html is included in the AsciiDoc distribution which can also be viewed at
http://www.methods.co.nz/asciidoc/latex-backend.html.

Document Structure
An AsciiDoc document consists of a series of block elements starting with an optional document Header,
followed by an optional Preamble, followed by zero or more document Sections.

Almost any combination of zero or more elements constitutes a valid AsciiDoc document: documents can
range from a single sentence to a multi-part book.

AsciiDoc User Guide

9

http://www.methods.co.nz/asciidoc/latex-backend.html

1This is a rough structural guide, not a rigorous syntax definition

Block Elements
Block elements consist of one or more lines of text and may contain other block elements.

The AsciiDoc block structure can be informally summarized 1 as follows:

Document ::= (Header?,Preamble?,Section*)
Header ::= (Title,(AuthorLine,RevisionLine?)?)
AuthorLine ::= (FirstName,(MiddleName?,LastName)?,EmailAddress?)
RevisionLine ::= (Revision?,Date)
Preamble ::= (SectionBody)
Section ::= (Title,SectionBody?,(Section)*)
SectionBody ::= ((BlockTitle?,Block)|BlockMacro)+
Block ::= (Paragraph|DelimitedBlock|List|Table)
List ::= (BulletedList|NumberedList|LabeledList|CalloutList)
BulletedList ::= (ListItem)+
NumberedList ::= (ListItem)+
CalloutList ::= (ListItem)+
LabeledList ::= (ItemLabel+,ListItem)+
ListItem ::= (ItemText,(List|ListParagraph|ListContinuation)*)
Table ::= (Ruler,TableHeader?,TableBody,TableFooter?)
TableHeader ::= (TableRow+,TableUnderline)
TableFooter ::= (TableRow+,TableUnderline)
TableBody ::= (TableRow+,TableUnderline)
TableRow ::= (TableData+)

Where:

• ? implies zero or one occurrence, + implies one or more occurrences, * implies zero or more
occurrences.

• All block elements are separated by line boundaries.

• BlockId, AttributeEntry and AttributeList block elements (not shown) can occur almost
anywhere.

• There are a number of document type and backend specific restrictions imposed on the block syntax.

• The following elements cannot contain blank lines: Header, Title, Paragraph, ItemText.

• A ListParagraph is a Paragraph with its listelement option set.

• A ListContinuation is a list continuation element.

Header
The Header is optional but must start on the first line of the document and must begin with a document
title. Optional Author and Revision lines immediately follow the title. The header can be preceded by a
CommentBlock or comment lines.

The author line contains the author's name optionally followed by the author's email address. The author's
name consists of a first name followed by optional middle and last names separated by white space.
Multi-word first, middle and last names can be entered in the header author line using the underscore as a
word separator. The email address comes last and must be enclosed in angle <> brackets. Author names

AsciiDoc User Guide

10

cannot contain angle <> bracket characters.

The optional document header revision line should immediately follow the author line. The revision line
can be one of two formats:

1. A an alphanumeric document revision number followed by a date:

• The revision number and date must be separated by a comma.

• The revision number is optional but must contain at least one numeric character.

• Any non-numeric characters preceding the first numeric character will be dropped.

2. An RCS/CSV/SVN Id marker.

The document heading is separated from the remainder of the document by one or more blank lines.

Here's an example AsciiDoc document header:

Writing Documentation using AsciiDoc
====================================
Stuart Rackham <srackham@methods.co.nz>
v2.0, February 2003

You can override or set header parameters by passing revision, data, email, author, authorinitials,
firstname and lastname attributes using the asciidoc(1) -a (—attribute) command-line option. For
example:

$ asciidoc -a date=2004/07/27 article.txt

Attributes can also be added to the header for substitution in the header template with Attribute Entry
elements.

Preamble
The Preamble is an optional untitled section body between the document Header and the first Section title.

Sections
AsciiDoc supports five section levels 0 to 4 (although only book documents are allowed to contain level 0
sections). Section levels are delineated by the section titles.

Sections are translated using configuration file markup templates. To determine which configuration file
template to use AsciiDoc first searches for special section titles in the [specialsections] configuration
entries, if not found it uses the [sect<level>] template.

The -n (—section-numbers) command-line option auto-numbers HTML outputs (DocBook line
numbering is handled automatically by the DocBook toolchain commands).

Section IDs are auto-generated from section titles if the sectids attribute is defined (the default
behavior). The primary purpose of this feature is to ensure persistence of table of contents links: missing

AsciiDoc User Guide

11

section IDs are generated dynamically by the JavaScript TOC generator after the page is loaded. This
means, for example, that if you go to a bookmarked dynamically generated TOC address the page will
load but the browser will ignore the (as yet ungenerated) section ID.

The IDs are generated by the following algorithm:

• Replace all non-alphanumeric title characters with an underscore.

• Strip leading or trailing underscores.

• Convert to lowercase.

• Prepend an underscore (so there's no possibility of name clashes with existing document IDs).

• A numbered suffix (_2, _3 …) is added if a same named auto-generated section ID exists.

For example the title Jim's House would generate the ID _jim_s_house.

Special Sections

In addition to normal sections, documents can contain optional frontmatter and backmatter sections — for
example: preface, bibliography, table of contents, index.

The AsciiDoc configuration file [specialsections] section specifies special section titles and the
corresponding backend markup templates.

[specialsections] entries are formatted like:

<pattern>=<name>

<pattern> is a Python regular expression and <name> is the name of a configuration file markup template
section. If the <pattern> matches an AsciiDoc document section title then the backend output is marked
up using the <name> markup template (instead of the default sect<level> section template). The {title}
attribute value is set to the value of the matched regular expression group named title, if there is no title
group {title} defaults to the the whole of the AsciiDoc section title.

AsciiDoc comes preconfigured with the following special section titles:

Preface (book documents only)
Abstract (article documents only)
Dedication (book documents only)
Glossary
Bibliography|References
Colophon (book documents only)
Index
Appendix [A-Z][:.] <title>

Inline Elements
Inline document elements are used to markup character formatting and various types of text substitution.
Inline elements and inline element syntax is defined in the asciidoc(1) configuration files.

Here is a list of AsciiDoc inline elements in the (default) order in which they are processed:

AsciiDoc User Guide

12

Special characters
These character sequences escape special characters used by the backend markup (typically "<", ">",
and "&"). See [specialcharacters] configuration file sections.

Quotes
Characters that markup words and phrases; usually for character formatting. See [quotes]

configuration file sections.

Special Words
Word or word phrase patterns singled out for markup without the need for further annotation. See
[specialwords] configuration file sections.

Replacements
Each Replacement defines a word or word phrase pattern to search for along with corresponding
replacement text. See [replacements] configuration file sections.

Attributes
Document attribute names enclosed in braces (attribute references) are replaced by the corresponding
attribute value.

Inline Macros
Inline macros are replaced by the contents of parametrized configuration file sections.

Document Processing
The AsciiDoc source document is read and processed as follows:

1. The document Header is parsed, header parameter values are substituted into the configuration file
[header] template section which is then written to the output file.

2. Each document Section is processed and its constituent elements translated to the output file.

3. The configuration file [footer] template section is substituted and written to the output file.

When a block element is encountered asciidoc(1) determines the type of block by checking in the
following order (first to last): (section) Titles, BlockMacros, Lists, DelimitedBlocks, Tables,
AttributeEntrys, AttributeLists, BlockTitles, Paragraphs.

The default paragraph definition [paradef-default] is last element to be checked.

Knowing the parsing order will help you devise unambiguous macro, list and block syntax rules.

Inline substitutions within block elements are performed in the following default order:

1. Special characters

2. Quotes

3. Special words

AsciiDoc User Guide

13

4. Replacements

5. Attributes

6. Inline Macros

7. Passthroughs

8. Replacements2

The substitutions and substitution order performed on Title, Paragraph and DelimitedBlock elements is
determined by configuration file parameters.

Text Formatting
Quoted Text

Words and phrases can be formatted by enclosing inline text with quote characters:

Emphasized text
Word phrases 'enclosed in single quote characters' (acute accents) or _underline characters_ are
emphasized.

Strong text
Word phrases *enclosed in asterisk characters* are rendered in a strong font (usually bold).

Monospaced text

Word phrases `enclosed in backtick characters` (grave accents) or +plus characters+ are rendered in a
monospaced font.

“Quoted text”
Phrases ``enclosed with two grave accents to the left and two acute accents to the right'' are rendered
in quotation marks.

Unquoted text
Placing #hashes around text# does nothing, it is a mechanism to allow inline attributes to be applied to
otherwise unformatted text (see example below).

The alternative underline and plus characters, while marginally less readable, are arguably a better choice
than the backtick and apostrophe characters as they are not normally used for, and so not confused with,
punctuation.

Quoted text can be prefixed with an attribute list. Currently the only use made of this feature is to allow
the font color, background color and size to be specified (XHTML/HTML only, not DocBook) using the
first three positional attribute arguments. The first argument is the text color; the second the background
color; the third is the font size. Colors are valid CSS colors and the font size is a number which treated as
em units. Here are some examples:

[red]#Red text#.
[,yellow]*bold text on a yellow background*.

AsciiDoc User Guide

14

[blue,#b0e0e6]+Monospaced blue text on a light blue background+
[,,2]#Double sized text#.

New quotes can be defined by editing asciidoc(1) configuration files. See the Configuration Files
section for details.

Quoted text properties

• Quoting cannot be overlapped.

• Different quoting types can be nested.

• To suppress quoted text formatting place a backslash character immediately in front of the leading
quote character(s). In the case of ambiguity between escaped and non-escaped text you will need to
escape both leading and trailing quotes, in the case of multi-character quotes you may even need to
escape individual characters.

• A configuration file [quotes] entry can be subsequently undefined by setting it to a blank value.

Constrained and Unconstrained Quotes

There are actually two types of quotes:

Constrained quotes

Quote text that must be bounded by white space, for example a phrase or a word. These are the most
common type of quote and are the ones discussed previously.

Unconstrained quotes

Unconstrained quotes have no boundary constraints and can be placed anywhere within inline text. For
consistency and to make them easier to remember unconstrained quotes are double-ups of the _, *, + and #

constrained quotes:

__unconstrained emphasized text__
unconstrained strong text
++unconstrained monospaced text++
##unconstrained unquoted text##

The following example emboldens the letter F:

File Open...

Inline Passthroughs
This special text quoting mechanism passes inline text to the output document without the usual
substitutions. There are two flavors:

+++Triple-plus passthrough+++

AsciiDoc User Guide

15

No change is made to the quoted text, it is passed verbatim to the output document.

$$Double-dollar passthrough$$
Special characters are escaped but no other changes are made. This passthrough can be prefixed with
inline attributes.

Superscripts and Subscripts
Put ^carets on either^ side of the text to be superscripted, put ~tildes on either side~ of text to be
subscripted. For example, the following line:

e^{amp}#960;i^+1 = 0. H~2~O and x^10^. Some ^super text^
and ~some sub text~

Is rendered like:

e#i+1 = 0. H
2
O and x10. Some super text and

some sub text

Superscripts and subscripts are implemented as unconstrained quotes so they can be escaped with a
leading backslash and prefixed with with an attribute list.

Line Breaks (HTML/XHTML)
A plus character preceded by at least one space character at the end of a line forces a line break. It
generates an HTML line break (
) tag. Line breaks are ignored when outputting to DocBook since
it has no line break element.

Rulers (HTML/XHTML)
A line of four or more apostrophe characters will generate an HTML ruler (<hr />) tag. Ignored when
generating non-HTML output formats.

Tabs
By default tab characters input files will translated to 8 spaces. Tab expansion is set with the tabsize entry
in the configuration file [miscellaneous] section and can be overridden in the include block macro by
setting a tabsize attribute in the macro's attribute list. For example:

include::addendum.txt[tabsize=2]

The tab size can also be set using the attribute command-line option, for example --attribute

tabsize=4

Replacements
The following replacements are defined in the default AsciiDoc configuration:

(C) copyright, (TM) trademark, (R) registered trademark,
-- em dash, ... ellipsis.

AsciiDoc User Guide

16

Which are rendered as:

© copyright, ™ trademark, ® registered trademark, — em dash, … ellipsis.

The Configuration Files section explains how to configure your own replacements.

Special Words
Words defined in [specialwords] configuration file sections are automatically marked up without
having to be explicitly notated.

The Configuration Files section explains how to add and replace special words.

Titles
Document and section titles can be in either of two formats:

Two line titles
A two line title consists of a title line, starting hard against the left margin, and an underline. Section
underlines consist a repeated character pairs spanning the width of the preceding title (give or take up to
three characters):

The default title underlines for each of the document levels are:

Level 0 (top level): ======================
Level 1: ----------------------
Level 2: ~~~~~~~~~~~~~~~~~~~~~~
Level 3: ^^^^^^^^^^^^^^^^^^^^^^
Level 4 (bottom level): ++++++++++++++++++++++

Examples:

Level One Section Title

Level 2 Subsection Title
~~~~~~~~~~~~~~~~~~~~~~~~

One line titles
One line titles consist of a single line delimited on either side by one or more equals characters (the
number of equals characters corresponds to the section level minus one). Here are some examples (levels
2 and 3 illustrate the optional trailing equals characters syntax):

= Document Title (level 0) =
== Section title (level 1) ==
=== Section title (level 2) ===
==== Section title (level 3) ====
===== Section title (level 4) =====

Note

AsciiDoc User Guide

17



• One or more spaces must fall between the title and the delimiters.

• The trailing title delimiter is optional.

• The one-line title syntax can be changed by editing the configuration file [titles] section
sect0…sect4 entries.

BlockTitles
A BlockTitle element is a single line beginning with a period followed by a title. The title is applied to the
next Paragraph, DelimitedBlock, List, Table or BlockMacro. For example:

.Notes
- Note 1.
- Note 2.

is rendered as:

Notes

• Note 1.

• Note 2.

BlockId Element
A BlockId is a single line block element containing a unique identifier enclosed in double square brackets.
It is used to assign an identifier to the ensuing block element for use by referring links. For example:

[[chapter-titles]]
Chapter titles can be ...

The preceding example identifies the following paragraph so it can be linked from other location, for
example with <<chapter-titles,chapter titles>>.

BlockId elements can be applied to Title, Paragraph, List, DelimitedBlock, Table and BlockMacro
elements. The BlockId element is really just an AttributeList with a special syntax which sets the {id}

attribute for substitution in the subsequent block's markup template.

The BlockId element has the same syntax and serves a similar function to the anchor inline macro.

Paragraphs
Paragraphs are terminated by a blank line, the end of file, or the start of a DelimitedBlock.

Paragraph markup is specified by configuration file [paradef*] sections. AsciiDoc ships with the
following predefined paragraph types:

AsciiDoc User Guide

18



Default Paragraph
A Default paragraph ([paradef-default]) consists of one or more non-blank lines of text. The first line
must start hard against the left margin (no intervening white space). The processing expectation of the
default paragraph type is that of a normal paragraph of text.

The verse paragraph style preserves line boundaries and is useful for lyrics and poems. For example:

[verse]
Consul *necessitatibus* per id,
consetetur, eu pro everti postulant
homero verear ea mea, qui.

Renders:

Consul necessitatibus per id,
consetetur, eu pro everti postulant
homero verear ea mea, qui.

Literal Paragraph
A Literal paragraph ([paradef-literal]) consists of one or more lines of text, where the first line is
indented by one or more space or tab characters. Literal paragraphs are rendered verbatim in a
monospaced font usually without any distinguishing background or border. There is no text formatting or
substitutions within Literal paragraphs apart from Special Characters and Callouts. For example:

Consul *necessitatibus* per id,
consetetur, eu pro everti postulant
homero verear ea mea, qui.

Renders:

Consul *necessitatibus* per id,
consetetur, eu pro everti postulant
homero verear ea mea, qui.

Admonition Paragraphs
Tip, Note, Important, Warning and Caution paragraph definitions support the corresponding DocBook
admonishment elements — just write a normal paragraph but place NOTE:, TIP:, IMPORTANT:, WARNING:
or CAUTION: as the first word of the paragraph. For example:

NOTE: This is an example note.

or the alternative syntax:

[NOTE]
This is an example note.

Renders:

AsciiDoc User Guide

19



This is an example note.

If your admonition is more than a single paragraph use an admonition block instead.

Admonition Icons and Captions

Admonition customization with icons, iconsdir, icon and caption attributes does not apply
when generating DocBook output. If you are going the DocBook route then the a2x(1)

—no-icons and —icons-dir options can be used to set the appropriate XSL Stylesheets
parameters.

By default the asciidoc(1) xhtml11 and html4 backends generate text captions instead of icon image
links. To generate links to icon images define the icons attribute, for example using the -a icons

command-line option.

The iconsdir attribute sets the location of linked icon images.

You can override the default icon image using the icon attribute to specify the path of the linked image.
For example:

[icon="./images/icons/wink.png"]
NOTE: What lovely war.

Use the caption attribute to customize the admonition captions (not applicable to docbook backend). The
following example suppresses the icon image and customizes the caption of a NOTE admonition
(undefining the icons attribute with icons=None is only necessary if admonition icons have been
enabled):

[icons=None, caption="My Special Note"]
NOTE: This is my special note.

This subsection also applies to Admonition Blocks.

Delimited Blocks
Delimited blocks are blocks of text enveloped by leading and trailing delimiter lines (normally a series of
four or more repeated characters). The behavior of Delimited Blocks is specified by entries in
configuration file [blockdef*] sections.

Predefined Delimited Blocks
AsciiDoc ships with a number of predefined DelimitedBlocks (see the asciidoc.conf configuration file
in the asciidoc(1) program directory):

Predefined delimited block underlines:

CommentBlock: //////////////////////////

AsciiDoc User Guide

20



PassthroughBlock: ++++++++++++++++++++++++++
ListingBlock: --------------------------
LiteralBlock: ..........................
SidebarBlock: **************************
QuoteBlock: __________________________
ExampleBlock: ==========================
Filter blocks: code~~~~~~~~~~~~~~~~~~~~~~

source~~~~~~~~~~~~~~~~~~~~
music~~~~~~~~~~~~~~~~~~~~~

The code, source and music filter blocks are detailed in the Filters section.

Table 1. Default DelimitedBlock substitutions

Passthrough Listing Literal Sidebar Quote
Callouts No Yes Yes No No

Attributes Yes No No Yes Yes

Inline Macros Yes No No Yes Yes

Quotes No No No Yes Yes

Replacements No No No Yes Yes

Special chars No Yes Yes Yes Yes

Special words No No No Yes Yes

Listing Blocks
ListingBlocks are rendered verbatim in a monospaced font, they retain line and whitespace formatting and
often distinguished by a background or border. There is no text formatting or substitutions within Listing
blocks apart from Special Characters and Callouts. Listing blocks are often used for code and file listings.

Here's an example:

--------------------------------------
#include <stdio.h>

int main() {
printf("Hello World!\n");
exit(0);

}
--------------------------------------

Which will be rendered like:

#include <stdio.h>

int main() {
printf("Hello World!\n");
exit(0);

}

Literal Blocks

AsciiDoc User Guide

21



LiteralBlocks behave just like LiteralParagraphs except you don't have to indent the contents.

LiteralBlocks can be used to resolve list ambiguity. If the following list was just indented it would be
processed as an ordered list (not an indented paragraph):

....................
1. Item 1
2. Item 2
....................

Renders:

1. Item 1
2. Item 2

A verse style can be applied to LiteralBlocks (useful for lyrics and poems). For example:

[verse]
......................................
Consul *necessitatibus* per id,
consetetur, eu pro everti postulant
homero verear ea mea, qui.

Qui in magna commodo, est labitur
dolorum an. Est ne *magna primis
adolescens*.
......................................

Renders:

Consul necessitatibus per id,
consetetur, eu pro everti postulant
homero verear ea mea, qui.

Qui in magna commodo, est labitur
dolorum an. Est ne magna primis
adolescens.

SidebarBlocks
A sidebar is a short piece of text presented outside the narrative flow of the main text. The sidebar is
normally presented inside a bordered box to set it apart from the main text.

The sidebar body is treated like a normal section body.

Here's an example:

.An Example Sidebar
************************************************
Any AsciiDoc SectionBody element (apart from
SidebarBlocks) can be placed inside a sidebar.
************************************************

Which will be rendered like:

AsciiDoc User Guide

22



An Example Sidebar

Any AsciiDoc SectionBody element (apart from SidebarBlocks) can be placed inside a sidebar.

Comment Blocks
The contents of CommentBlocks are not processed; they are useful for annotations and for excluding new
or outdated content that you don't want displayed. Here's and example:

//////////////////////////////////////////
CommentBlock contents are not processed by
asciidoc(1).
//////////////////////////////////////////

See also Comment Lines.

Passthrough Blocks
PassthroughBlocks are for backend specific markup, text is only subject to attribute and macro
substitution. PassthroughBlock content will generally be backend specific. Here's an example:

++++++++++++++++++++++++++++++++++++++
<table border="1"><tr>
<td>Cell 1</td>
<td>Cell 2</td>

</tr></table>
++++++++++++++++++++++++++++++++++++++

Quote Blocks
QuoteBlocks are used for quoted passages of text. attribution and citetitle named attributes specify the
author and source of the quote (they are equivalent to positional attribute list entries 1 and 2 respectively).
Both attributes are optional and the block body is treated like a SectionBody. For example:

[Bertrand Russell, The World of Mathematics (1956)]
____________________________________________________________________
A good notation has subtlety and suggestiveness which at times makes
it almost seem like a live teacher.
____________________________________________________________________

Which is rendered as:

A good notation has subtlety and suggestiveness which at times makes it almost seem like
a live teacher.

— Bertrand Russell The World of Mathematics (1956)

In this example unquoted positional attributes have been used, the following quoted positional and named
attributes are equivalent (if the attribute list contained commas then quoting would have been mandatory):

["Bertrand Russell","The World of Mathematics (1956)"]
[attribution="Bertrand Russell",citetitle="The World of Mathematics (1956)"]

AsciiDoc User Guide

23



You can render poems and lyrics with a combination of Quote and Literal blocks. For example:

[William Blake,from Auguries of Innocence]
_____________________________________________________________________
[verse]
.....................................................................
To see a world in a grain of sand,
And a heaven in a wild flower,
Hold infinity in the palm of your hand,
And eternity in an hour.
.....................................................................
_____________________________________________________________________

Which is rendered as:

To see a world in a grain of sand,
And a heaven in a wild flower,
Hold infinity in the palm of your hand,
And eternity in an hour.

— William Blake from Auguries of Innocence

Example Blocks
ExampleBlocks encapsulate the DocBook Example element and are used for, well, examples. Example
blocks can be titled by preceding them with a BlockTitle. DocBook toolchains normally number examples
and generate a List of Examples backmatter section.

Example blocks are delimited by lines of equals characters and you can put any block elements apart from
Titles, BlockTitles and Sidebars) inside an example block. For example:

.An example
=====================================================================
Qui in magna commodo, est labitur dolorum an. Est ne magna primis
adolescens.
=====================================================================

Renders:

Example 1. An example

Qui in magna commodo, est labitur dolorum an. Est ne magna primis adolescens.

The title prefix that is automatically inserted by asciidoc(1) can be customized with the caption

attribute (xhtml11 and html4 backends). For example

[caption="Example 1: "]
.An example with a custom caption
=====================================================================
Qui in magna commodo, est labitur dolorum an. Est ne magna primis
adolescens.
=====================================================================

AsciiDoc User Guide

24



Admonition Blocks
The ExampleBlock definition includes a set of admonition styles (NOTE, TIP, IMPORTANT,
WARNING, CAUTION) for generating admonition blocks (admonitions containing more than just a
simple paragraph). Just precede the ExampleBlock with an attribute list containing the admonition style
name. For example:

[NOTE]
.A NOTE block
=====================================================================
Qui in magna commodo, est labitur dolorum an. Est ne magna primis
adolescens.

. Fusce euismod commodo velit.

. Vivamus fringilla mi eu lacus.
.. Fusce euismod commodo velit.
.. Vivamus fringilla mi eu lacus.

. Donec eget arcu bibendum
nunc consequat lobortis.

=====================================================================

Renders:

A NOTE block

Qui in magna commodo, est labitur dolorum an. Est ne magna primis adolescens.

1. Fusce euismod commodo velit.

2. Vivamus fringilla mi eu lacus.

a. Fusce euismod commodo velit.

b. Vivamus fringilla mi eu lacus.

3. Donec eget arcu bibendum nunc consequat lobortis.

See also Admonition Icons and Captions.

Lists
List types

• Bulleted lists. Also known as itemized or unordered lists.

• Numbered lists. Also called ordered lists.

• Labeled lists. Sometimes called variable or definition lists.

• Callout lists (a list of callout annotations).

AsciiDoc User Guide

25



List behavior

• Indentation is optional and does not determine nesting, indentation does however make the source more
readable.

• A nested list must use a different syntax from its parent so that asciidoc(1) can distinguish the start
of a nested list.

• By default lists of the same type can only be nested two deep; this could be increased by defining new
list definitions.

• In addition to nested lists a list item will include immediately following Literal paragraphs.

• Use List Item Continuation to include other block elements in a list item.

• The listindex intrinsic attribute is the current list item index (1..). If this attribute is not inside a list
then it's value is the number of items in the most recently closed list. Useful for displaying the number
of items in a list.

Bulleted and Numbered Lists
Bulleted list items start with a dash or an asterisk followed by a space or tab character. Bulleted list
syntaxes are:

- List item.
* List item.

Numbered list items start with an optional number or letter followed by a period followed by a space or
tab character. List numbering is optional. Numbered list syntaxes are:

. Integer numbered list item.
1. Integer numbered list item with optional numbering.
.. Lowercase letter numbered list item.
a. Lowercase letter numbered list item with optional numbering.

Here are some examples:

- Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
* Fusce euismod commodo velit.
* Qui in magna commodo, est labitur dolorum an. Est ne magna primis
adolescens. Sit munere ponderum dignissim et. Minim luptatum et
vel.

* Vivamus fringilla mi eu lacus.
* Donec eget arcu bibendum nunc consequat lobortis.

- Nulla porttitor vulputate libero.
. Fusce euismod commodo velit.
. Vivamus fringilla mi eu lacus.
.. Fusce euismod commodo velit.
.. Vivamus fringilla mi eu lacus.

. Donec eget arcu bibendum nunc consequat lobortis.
- Praesent eget purus quis magna eleifend eleifend.
1. Fusce euismod commodo velit.
a. Fusce euismod commodo velit.
b. Vivamus fringilla mi eu lacus.
c. Donec eget arcu bibendum nunc consequat lobortis.

2. Vivamus fringilla mi eu lacus.

AsciiDoc User Guide

26



3. Donec eget arcu bibendum nunc consequat lobortis.
4. Nam fermentum mattis ante.

Which render as:

• Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

• Fusce euismod commodo velit.

• Qui in magna commodo, est labitur dolorum an. Est ne magna primis adolescens. Sit munere
ponderum dignissim et. Minim luptatum et vel.

• Vivamus fringilla mi eu lacus.

• Donec eget arcu bibendum nunc consequat lobortis.

• Nulla porttitor vulputate libero.

1. Fusce euismod commodo velit.

2. Vivamus fringilla mi eu lacus.

a. Fusce euismod commodo velit.

b. Vivamus fringilla mi eu lacus.

3. Donec eget arcu bibendum nunc consequat lobortis.

• Praesent eget purus quis magna eleifend eleifend.

1. Fusce euismod commodo velit.

a. Fusce euismod commodo velit.

b. Vivamus fringilla mi eu lacus.

c. Donec eget arcu bibendum nunc consequat lobortis.

2. Vivamus fringilla mi eu lacus.

3. Donec eget arcu bibendum nunc consequat lobortis.

4. Nam fermentum mattis ante.

Vertical Labeled Lists
Labeled list items consist of one or more text labels followed the text of the list item.

An item label begins a line with an alphanumeric character hard against the left margin and ends with a
double colon :: or semi-colon ;;.

The list item text consists of one or more lines of text starting on the line immediately following the label

AsciiDoc User Guide

27



and can be followed by nested List or ListParagraph elements. Item text can be optionally indented.

Here are some examples:

Lorem::
Fusce euismod commodo velit.

Fusce euismod commodo velit.

Ipsum::
Vivamus fringilla mi eu lacus.
* Vivamus fringilla mi eu lacus.
* Donec eget arcu bibendum nunc consequat lobortis.

Dolor::
Donec eget arcu bibendum nunc consequat lobortis.
Suspendisse;;
A massa id sem aliquam auctor.

Morbi;;
Pretium nulla vel lorem.

In;;
Dictum mauris in urna.

Which render as:

Lorem
Fusce euismod commodo velit.

Fusce euismod commodo velit.

Ipsum
Vivamus fringilla mi eu lacus.

• Vivamus fringilla mi eu lacus.

• Donec eget arcu bibendum nunc consequat lobortis.

Dolor
Donec eget arcu bibendum nunc consequat lobortis.

Suspendisse
A massa id sem aliquam auctor.

Morbi
Pretium nulla vel lorem.

In
Dictum mauris in urna.

Horizontal Labeled Lists
Horizontal labeled lists differ from vertical labeled lists in that the label and the list item sit side-by-side
as opposed to the item under the label. Item text must begin on the same line as the label although you can
begin item text on the next line if you follow the label with a backslash.

The following horizontal list example also illustrates the omission of optional indentation:

AsciiDoc User Guide

28



*Lorem*:: Fusce euismod commodo velit. Qui in magna commodo, est
labitur dolorum an. Est ne magna primis adolescens.

Fusce euismod commodo velit.

*Ipsum*:: Vivamus fringilla mi eu lacus.
- Vivamus fringilla mi eu lacus.
- Donec eget arcu bibendum nunc consequat lobortis.

*Dolor*:: \
- Vivamus fringilla mi eu lacus.
- Donec eget arcu bibendum nunc consequat lobortis.

Which render as:

Lorem Fusce euismod commodo velit. Qui in magna commodo, est labitur
dolorum an. Est ne magna primis adolescens.

Fusce euismod commodo velit.

Ipsum Vivamus fringilla mi eu lacus.

• Vivamus fringilla mi eu lacus.

• Donec eget arcu bibendum nunc consequat lobortis.

Dolor
• Vivamus fringilla mi eu lacus.

• Donec eget arcu bibendum nunc consequat lobortis.

• Use vertical labeled lists in preference to horizontal labeled lists — current PDF toolchains
do not make a good job of determining the relative column widths.

• If you are generating DocBook markup the horizontal labeled lists should not be nested
because the DocBook XML V4.2 DTD does not permit nested informal tables (although
DocBook XSL Stylesheets process them correctly).

Question and Answer Lists
AsciiDoc comes pre-configured with a labeled list for generating DocBook question and answer (Q&A)
lists (?? label delimiter). Example:

Question one??
Answer one.

Question two??
Answer two.

AsciiDoc User Guide

29



Renders:

1.
Question one

Answer one.

2.
Question two

Answer two.

Glossary Lists
AsciiDoc comes pre-configured with a labeled list (:- label delimiter) for generating DocBook glossary
lists. Example:

A glossary term:-
The corresponding definition.

A second glossary term:-
The corresponding definition.

For working examples see the article.txt and book.txt documents in the AsciiDoc ./doc distribution
directory.

To generate valid DocBook output glossary lists must be located in a glossary section.

Bibliography Lists
AsciiDoc comes with a predefined itemized list (+ item bullet) for generating bibliography entries.
Example:

+ [[[taoup]]] Eric Steven Raymond. 'The Art of UNIX
Programming'. Addison-Wesley. ISBN 0-13-142901-9.

+ [[[walsh-muellner]]] Norman Walsh & Leonard Muellner.
'DocBook - The Definitive Guide'. O'Reilly & Associates.
1999. ISBN 1-56592-580-7.

The [[[<reference>]]] syntax is a bibliography entry anchor, it generates an anchor named
<reference> and additionally displays [<reference>] at the anchor position. For example
[[[taoup]]] generates an anchor named taoup that displays [taoup] at the anchor position. Cite the
reference from elsewhere your document using <<taoup>>, this displays a hyperlink ([taoup]) to the
corresponding bibliography entry anchor.

For working examples see the article.txt and book.txt documents in the AsciiDoc ./doc distribution
directory.

AsciiDoc User Guide

30



To generate valid DocBook output bibliography lists must be located in a bibliography section.

List Item Continuation
To include subsequent block elements in list items (in addition to implicitly included nested lists and
Literal paragraphs) place a separator line containing a single plus character between the list item and the
ensuing list continuation element. Multiple block elements (excluding section Titles and BlockTitles) may
be included in a list item using this technique. For example:

Here's an example of list item continuation:

1. List item one.
+
List item one continued with a second paragraph followed by an
Indented block.
+
.................
$ ls *.sh
$ mv *.sh ~/tmp
.................
+
List item one continued with a third paragraph.

2. List item two.

List item two literal paragraph (no continuation required).

- Nested list (item one).

Nested list literal paragraph (no continuation required).
+
Nested list appended list item one paragraph

- Nested list item two.

Renders:

1. List item one.

List item one continued with a second paragraph followed by a Listing block.

$ ls *.sh
$ mv *.sh ~/tmp

List item one continued with a third paragraph.

2. List item two.

List item two literal paragraph (no continuation required).

• Nested list (item one).

Nested list literal paragraph (no continuation required).

Nested list appended list item one paragraph

AsciiDoc User Guide

31



• Nested list item two.

List Block
A List block is a special delimited block containing a list element.

• All elements between in the List Block are part of the preceding list item. In this respect the List block
behaves like List Item Continuation except that list items contained within the block do not require
explicit + list item continuation lines:

• The block delimiter is a single line containing two dashes.

• Any block title or attributes are passed to the first element inside the block.

The List Block is useful for:

1. Lists with long multi-element list items.

2. Nesting a list within a parent list item (by default nested lists follow the preceding list item).

Here's an example of a nested list block:

.Nested List Block
1. List item one.
+
This paragraph is part of the preceding list item
+
--
a. This list is nested and does not require explicit item continuation.

This paragraph is part of the preceding list item

b. List item b.

This paragraph belongs to list item b.
--
+
This paragraph belongs to item 1.

2. Item 2 of the outer list.

Renders:

Nested List Block

1. List item one.

This paragraph is part of the preceding list item

a. This list is nested and does not require explicit item continuation.

AsciiDoc User Guide

32



2An example footnote.

This paragraph is part of the preceding list item

b. List item b.

This paragraph belongs to list item b.

This paragraph belongs to item 1.

2. Item 2 of the outer list.

Footnotes
The shipped AsciiDoc configuration includes the footnote:[<text>] inline macro for generating
footnotes. The footnote text can span multiple lines. Example footnote:

A footnote footnote:[An example footnote.]

Which renders:

A footnote 2

Footnotes are primarily useful when generating DocBook output — DocBook conversion programs
render footnote outside the primary text flow.

Indexes
The shipped AsciiDoc configuration includes the inline macros for generating document index entries.

indexterm:[<primary>,<secondary>,<tertiary>] , (((<primary>,<secondary>,<tertiary>)))
This inline macro generates an index term (the <secondary> and <tertiary> attributes are optional).
For example indexterm:[Tigers,Big cats] (or, using the alternative syntax (((Tigers,Big

cats))). Index terms that have secondary and tertiary entries also generate separate index terms for
the secondary and tertiary entries. The index terms appear in the index, not the primary text flow.

indexterm2:[<primary>] , ((<primary>))
This inline macro generates an index term that appears in both the index and the primary text flow.
The <primary> should not be padded to the left or right with white space characters.

For working examples see the article.txt and book.txt documents in the AsciiDoc ./doc distribution
directory.

Index entries only really make sense if you are generating DocBook markup — DocBook
conversion programs automatically generate an index at the point an Index section appears in

AsciiDoc User Guide

33



source document.

Callouts
Callouts are a mechanism for annotating verbatim text (source code, computer output and user input for
example). Callout markers are placed inside the annotated text while the actual annotations are presented
in a callout list after the annotated text. Here's an example:

.MS-DOS directory listing

.....................................................
10/17/97 9:04 <DIR> bin
10/16/97 14:11 <DIR> DOS <1>
10/16/97 14:40 <DIR> Program Files
10/16/97 14:46 <DIR> TEMP
10/17/97 9:04 <DIR> tmp
10/16/97 14:37 <DIR> WINNT
10/16/97 14:25 119 AUTOEXEC.BAT <2>
2/13/94 6:21 54,619 COMMAND.COM <2>
10/16/97 14:25 115 CONFIG.SYS <2>
11/16/97 17:17 61,865,984 pagefile.sys
2/13/94 6:21 9,349 WINA20.386 <3>
.....................................................

<1> This directory holds MS-DOS.
<2> System startup code for DOS.
<3> Some sort of Windows 3.1 hack.

Which renders:

Example 2. MS-DOS directory listing

10/17/97 9:04 <DIR> bin
10/16/97 14:11 <DIR> DOS

10/16/97 14:40 <DIR> Program Files
10/16/97 14:46 <DIR> TEMP
10/17/97 9:04 <DIR> tmp
10/16/97 14:37 <DIR> WINNT
10/16/97 14:25 119 AUTOEXEC.BAT

2/13/94 6:21 54,619 COMMAND.COM

10/16/97 14:25 115 CONFIG.SYS

11/16/97 17:17 61,865,984 pagefile.sys
2/13/94 6:21 9,349 WINA20.386

This directory holds MS-DOS.
System startup code for DOS.
Some sort of Windows 3.1 hack.

Explanation

• The callout marks are whole numbers enclosed in angle brackets that refer to an item index in the
following callout list.

AsciiDoc User Guide

34



• By default callout marks are confined to LiteralParagraphs, LiteralBlocks and ListingBlocks (although
this is a configuration file option and can be changed).

• Callout list item numbering is fairly relaxed — list items can start with <n>, n> or > where n is the
optional list item number (in the latter case list items starting with a single > character are implicitly
numbered starting at one).

• Callout lists should not be nested — start list items hard against the left margin.

• If you want to present a number inside angle brackets you'll need to escape it with a backslash to
prevent it being interpreted as a callout mark.

To include callout icons in PDF files generated by a2x(1) you need to use the —icons

command-line option.

Implementation Notes
Callout marks are generated by the callout inline macro while callout lists are generated using the callout
list definition. The callout macro and callout list are special in that they work together. The callout inline
macro is not enabled by the normal macros substitutions option, instead it has its own callouts
substitution option.

The following attributes are available during inline callout macro substitution:

{index}

The callout list item index inside the angle brackets.

{coid}

An identifier formatted like CO<listnumber>-<index> that uniquely identifies the callout mark. For
example CO2-4 identifies the fourth callout mark in the second set of callout marks.

The {coids} attribute can be used during callout list item substitution — it is a space delimited list of
callout IDs that refer to the explanatory list item.

Including callouts in included code
You can annotate working code examples with callouts — just remember to put the callouts inside source
code comments. This example displays the test.py source file (containing a single callout) using the
Source Code Highlighter Filter:

Example 3. AsciiDoc source

[python]
source~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
include::test.py[]
source~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

<1> Print statement.

AsciiDoc User Guide

35



Example 4. Included test.py source

print 'Hello World!' # <1>

Macros
Macros are a mechanism for substituting parametrized text into output documents.

Macros have a name, a single target argument and an attribute list. The default syntax is
<name>:<target>[<attributelist>] (for inline macros) and <name>::<target>[<attributelist>]

(for block macros). Here are some examples:

http://www.methods.co.nz/asciidoc/index.html[Asciidoc home page]
include::chapt1.txt[tabsize=2]
mailto:srackham@methods.co.nz[]

Macro behavior

• <name> is the macro name. It can only contain letters, digits or dash characters and cannot start with a
dash.

• The optional <target> cannot contain white space characters.

• <attributelist> is a list of attributes enclosed in square brackets.

• The attribute list is mandatory even if it contains no attributes.

• Expansion of non-system macro references can be escaped by prefixing a backslash character.

• Block macro attribute reference substitution is performed prior to macro expansion.

• The substitutions performed prior to Inline macro macro expansion are determined by the inline
context.

• Macros are processed in the order they appear in the configuration file(s).

• Calls to inline macros can be nested inside different inline macros (an inline macro call cannot contain
a nested call to itself).

Inline Macros
Inline Macros occur in an inline element context. Predefined Inline macros include URLs, image and link
macros.

URLs

AsciiDoc User Guide

36



Standard http, https, ftp, file, mailto and callto URLs are rendered using predefined inline macros.

The default AsciiDoc inline macro syntax is very similar to a URL: all you need to do is append an
attribute list containing an optional caption immediately following the URL. If no caption text is provided
the URL itself is displayed.

Here are some examples:

http://www.methods.co.nz/asciidoc/[The AsciiDoc home page]
mailto:joe.bloggs@foobar.com[email Joe Bloggs]
mailto:joe.bloggs@foobar.com[]
callto:joe.bloggs[]

Which are rendered:

The AsciiDoc home page [http://www.methods.co.nz/asciidoc/]

email Joe Bloggs [mailto:joe.bloggs@foobar.com]

joe.bloggs@foobar.com [mailto:joe.bloggs@foobar.com]

joe.bloggs [callto:joe.bloggs]

If the <target> necessitates space characters they should be replaced by %20. For example
large%20image.png.

Internal Cross References

Two AsciiDoc inline macros are provided for creating hypertext links within an AsciiDoc document. You
can use either the standard macro syntax or the (preferred) alternative.

anchor

Used to specify hypertext link targets:

[[<id>,<xreflabel>]]
anchor:<id>[<xreflabel>]

The <id> is a unique identifier that must begin with a letter. The optional <xreflabel> is the text to be
displayed by captionless xref macros that refer to this anchor. The optional <xreflabel> is only really
useful when generating DocBook output. Example anchor:

[[X1]]

You may have noticed that the syntax of this inline element is the same as that of the BlockId block
element, this is no coincidence since they are functionally equivalent.

xref

Creates a hypertext link to a document anchor.

<<<id>,<caption>>>

AsciiDoc User Guide

37

http://www.methods.co.nz/asciidoc/
http://www.methods.co.nz/asciidoc/
mailto:joe.bloggs@foobar.com
mailto:joe.bloggs@foobar.com
mailto:joe.bloggs@foobar.com
mailto:joe.bloggs@foobar.com
callto:joe.bloggs
callto:joe.bloggs


xref:<id>[<caption>]

The <id> refers to an existing anchor <id>. The optional <caption> is the link's displayed text. Example:

<<X21,attribute lists>>

If <caption> is not specified then the displayed text is auto-generated:

• The AsciiDoc xhtml11 backend displays the <id> enclosed in square brackets.

• If DocBook is produced the DocBook toolchain is responsible for the displayed text which will
normally be the referenced figure, table or section title number followed by the element's title text.

Here is an example:

[[tiger_image]]
.Tyger tyger
image::tiger.png[]

This can be seen in <<tiger_image>>.

Linking to Local Documents

Hypertext links to files on the local filesystem are specified using the link inline macro.

link:<target>[<caption>]

The link macro generates relative URLs. The link macro <target> is the target file name (relative to the
file system location of the referring document). The optional <caption> is the link's displayed text. If
<caption> is not specified then <target> is displayed. Example:

link:downloads/foo.zip[download foo.zip]

You can use the <filename>#<id> syntax to refer to an anchor within a target document but this usually
only makes sense when targeting HTML documents.

Images can serve as hyperlinks using the image macro.

Images

Inline images are inserted into the output document using the image macro. The inline syntax is:

image:<target>[<attributes>]

The contents of the image file <target> is displayed. To display the image its file format must be
supported by the target backend application. HTML and DocBook applications normally support PNG or
JPG files.

<target> file name paths are relative to the location of the referring document.

AsciiDoc User Guide

38



Image macro attributes

• The optional first positional attribute list entry specifies the alternative text which is displayed if the
output application is unable to process the image file. For example:

image:images/logo.png[Company Logo]

• The optional width and height named attributes scale the image size and can be used in any
combination. The following example scales the previous example to a height of 32 pixels:

image:images/logo.png["Company Logo",height=32]

• The optional link named attribute is used to link the image to an external document. The following
example links a screenshot thumbnail to a full size version:

image:screen-thumbnail.png[height=32,link="screen.png"]

Block Macros
A Block macro reference must be contained in a single line separated either side by a blank line or a block
delimiter.

Block macros behave just like Inline macros, with the following differences:

• They occur in a block context.

• The default syntax is <name>::<target>[<attributelist>] (two colons, not one).

• Markup template section names end in -blockmacro instead of -inlinemacro.

Block Identifier

The Block Identifier macro sets the id attribute and has the same syntax as the anchor inline macro since
it performs essentially the same function — block templates employ the id attribute as a block link target.
For example:

[[X30]]

This is equivalent to the [id="X30"] block attribute list.

Images

Formal titled images are inserted into the output document using the image macro. The syntax is:

image::<target>[<attributes>]

AsciiDoc User Guide

39



The block image macro has the same macro attributes as its inline counterpart.

Images can be titled by preceding the image macro with a BlockTitle. DocBook toolchains normally
number examples and generate a List of Figures backmatter section.

For example:

.Main circuit board
image::images/layout.png[J14P main circuit board]

xhtml11 and html4 backends precede the title with a Figure : prefix. You can customize this prefix
with the caption attribute. For example:

.Main circuit board
[caption="Figure 2:"]
image::images/layout.png[J14P main circuit board]

Comment Lines

Single lines starting with two forward slashes hard up against the left margin are treated as comments and
are stripped from the output. Comment lines have been implemented as a block macro and are only valid
in a block context — they are not treated as comments inside paragraphs or delimited blocks. Example
comment line:

// This is a comment.

See also Comment Blocks.

System Macros
System macros are block macros that perform a predefined task which is hardwired into the asciidoc(1)

program.

• You can't escape system macros with a leading backslash character (as you can with other macros).

• The syntax and tasks performed by system macros is built into asciidoc(1) so they don't appear in
configuration files. You can however customize the syntax by adding entries to a configuration file
[macros] section.

Include Macros

The include and include1 system macros to include the contents of a named file into the source
document.

The include macro includes a file as if it were part of the parent document — tabs are expanded and
system macros processed. The contents of include1 files are not subject to tab expansion or system
macro processing nor are attribute or lower priority substitutions performed. The include1 macro's main
use is to include verbatim embedded CSS or scripts into configuration file headers. Example:

include::chapter1.txt[tabsize=4]

AsciiDoc User Guide

40



Include macro behavior

• If the included file name is specified with a relative path then the path is relative to the location of the
referring document.

• Include macros can appear inside configuration files.

• Files included from within DelimitedBlocks are read to completion to avoid false end-of-block
underline termination.

• File inclusion is limited to a depth of 5 to catch recursive loops.

• Attribute references are expanded inside the include target; if an an attribute is undefined then the
included file is silently skipped.

• The tabsize macro attribute sets the the number of space characters to be used for tab expansion in the
included file.

Conditional Inclusion Macros

Lines of text in the source document can be selectively included or excluded from processing based on the
the existence (or not) of a document attribute. There are two forms of conditional inclusion macro usage,
the first includes document text between the ifdef and endif macros if a document attribute is defined:

ifdef::<attribute>[]
:
endif::<attribute>[]

The second for includes document text between the ifndef and endif macros if the attribute is not
defined:

ifndef::<attribute>[]
:
endif::<attribute>[]

<attribute> is an attribute name which is optional in the trailing endif macro.

Take a look at the *.conf configuration files in the AsciiDoc distribution for examples of conditional
inclusion macro usage.

Two types of conditional inclusion

Conditional inclusion macros are evaluated when they are read, but there is another type of
conditional inclusion based on attribute references, the latter being evaluated when the output file
is written.

These examples illustrate the two forms of conditional inclusion. The only difference between
them is that the first is evaluated at program load time while the second is evaluated when the
output is written:

ifdef::world[]

AsciiDoc User Guide

41



Hello World!
endif::world[]

{world#}Hello World!

In this example when the {world#} conditional attribute reference is evaluates to a zero length
string if world is defined; if world is not defined the whole line is dropped.

The subtle difference between the two types of conditional inclusion has implications for
AsciiDoc configuration files: AsciiDoc has to read the configuration files before reading the
source document, this is necessary because the AsciiDoc source syntax is mostly defined by the
configuration files. This means that any lines of markup enveloped by conditional inclusion
macros will be included or excluded before the attribute entries in the AsciiDoc document header
are read, so setting related attributes in the AsciiDoc source document header will have no effect.
If you need to control configuration file markup inclusion with attribute entries in the AsciiDoc
source file header you need to use attribute references to control inclusion instead of conditional
inclusion macros (attribute references are substituted at the time the output is written rather than at
program startup).

eval, sys and sys2 System Macros

These block macros exhibit the same behavior as their same named system attribute references. The
difference is that system macros occur in a block macro context whereas system attributes are confined to
an inline context where attribute substitution is enabled.

The following example displays a long directory listing inside a literal block:

------------------
sys::[ls -l *.txt]
------------------

Template System Macro

The template block macro allows the inclusion of one configuration file template section within another.
The following example includes the [admonitionblock] section in the [admonitionparagraph]

section:

[admonitionparagraph]
template::[admonitionblock]

Template macro behavior

• The template::[] macro is useful for factoring configuration file markup.

• template::[] macros cannot be nested.

• template::[] macro expansion is applied to all sections after all configuration files have been read.

AsciiDoc User Guide

42



3The current table syntax is overly complicated and unwieldy to edit, hopefully a more usable syntax will appear in future versions
of AsciiDoc.

Macro Definitions
Each entry in the configuration [macros] section is a macro definition which can take one of the
following forms:

<pattern>=<name>

Inline macro definition.

<pattern>=#<name>

Block macro definition.

<pattern>=+<name>

System macro definition.

<pattern>

Delete the existing macro with this <pattern>.

<pattern> is a Python regular expression and <name> is the name of a markup template. If <name> is
omitted then it is the value of the regular expression match group named name.

Here's what happens during macro substitution

• Each contextually relevant macro pattern from the [macros] section is matched against the input
source line.

• If a match is found the text to be substituted is loaded from a configuration markup template section
named like <name>-inlinemacro or <name>-blockmacro (depending on the macro type).

• Global and macro attribute list attributes are substituted in the macro's markup template.

• The substituted template replaces the macro reference in the output document.

Tables
Tables are the most complex AsciiDoc elements and this section is quite long. 3

AsciiDoc generates nice HTML tables, but the current crop of DocBook toolchains render
tables with varying degrees of success. Use tables only when really necessary.

Example Tables
The following annotated examples are all you'll need to start creating your own tables.

AsciiDoc User Guide

43



The only non-obvious thing you'll need to remember are the column stop characters:

• Backtick (`) — align left.

• Single quote (') — align right.

• Period (.) — align center.

Simple table:

`---`---
1 2
3 4
5 6
--------

Output:

1 2

3 4

5 6

Table with title, header and footer:

.An example table
[grid="all"]
'---------.--------------
Column 1 Column 2
-------------------------
1 Item 1
2 Item 2
3 Item 3
-------------------------
6 Three items
-------------------------

Output:

Table 2. An example table

Column 1 Column 2

6 Three items

1 Item 1

2 Item 2

3 Item 3

Four columns totaling 15% of the pagewidth, CSV data:

[frame="all"]
````~15

AsciiDoc User Guide

44



1,2,3,4
a,b,c,d
A,B,C,D
~~~~~~~~

Output:

1 2 3 4

a b c d

A B C D

A table with a numeric ruler and externally sourced CSV data:

[frame="all", grid="all"]
.15`20`25`20`~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ID,Customer Name,Contact Name,Customer Address,Phone
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
include::customers.csv[]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Renders:

ID Customer
Name

Contact Name Customer
Address

Phone

AROUT Around the
Horn

Thomas Hardy 120 Hanover
Sq. London

(171)
555-7788

BERGS Berglunds
snabbkop

Christina
Berglund

Berguvsvagen
8 Lulea

0921-12 34 65

BLAUS Blauer See
Delikatessen

Hanna Moos Forsterstr. 57
Mannheim

0621-08460

BLONP Blondel pere
et fils

Frederique
Citeaux

24, place
Kleber
Strasbourg

88.60.15.31

BOLID Bolido
Comidas
preparadas

Martin Sommer C/ Araquil, 67
Madrid

(91) 555 22 82

BONAP Bon app' Laurence Lebihan 12, rue des
Bouchers
Marseille

91.24.45.40

BOTTM Bottom-Dollar
Markets

Elizabeth Lincoln 23 Tsawassen
Blvd.
Tsawassen

(604)
555-4729

BSBEV B's Beverages Victoria Ashworth Fauntleroy
Circus
London

(171)
555-1212

CACTU Cactus
Comidas para
llevar

Patricio Simpson Cerrito 333
Buenos Aires

(1) 135-5555

AsciiDoc User Guide

45

AsciiDoc Table Block Elements
This sub-section details the AsciiDoc table format.

Table ::= (Ruler,Header?,Body,Footer?)
Header ::= (Row+,Underline)
Footer ::= (Row+,Underline)
Body ::= (Row+,Underline)
Row ::= (Data+)

A table is terminated when the table underline is followed by a blank line or an end of file. Table
underlines which separate table headers, bodies and footers should not be followed by a blank line.

Ruler

The first line of the table is called the Ruler. The Ruler specifies which configuration file table definition
to use, column widths, column alignments and the overall table width.

There are two ruler formats:

Character ruler
The column widths are determined by the number of table fill characters between column stop
characters.

Numeric ruler
The column widths are specified numerically. If a column width is omitted the previous width is used.
In the degenerate case of no widths being specified columns are allocated equal widths.

The ruler format can be summarized as:

ruler ::= ((colstop,colwidth?,fillchar*)+, fillchar+, tablewidth?

• The ruler starts with a column stop character (designating the start of the first column).

• Column stop characters specify the start and alignment of each column:

• Backtick (`) — align left.

• Single quote (') — align right.

• Period (.) — align center.

• In the case of fixed format tables the ruler column widths specify source row data column boundaries.

• The optional tablewidth is a number representing the size of the output table relative to the pagewidth.
If tablewidth is less than one then it is interpreted as a fraction of the page width; if it is greater than
one then it is interpreted as a percentage of the page width. If tablewidth is not specified then the table
occupies the full pagewidth (numeric rulers) or the relative width of the ruler compared to the textwidth
(character rulers).

AsciiDoc User Guide

46

Row and Data Elements

Each table row consists of a line of text containing the same number of Data items as there are columns in
the table,

Lines ending in a backslash character are continued on the next line.

Each Data item is an AsciiDoc substitutable string. The substitutions performed are specified by the subs
table definition entry. Data cannot contain AsciiDoc block elements.

The format of the row is determined by the table definition format value:

fixed
Row data items are assigned by chopping the row up at ruler column width boundaries.

csv
Data items are assigned the parsed CSV (Comma Separated Values) data.

dsv
The DSV (Delimiter Separated Values) format is a common UNIX tabular text file format.

• The separator character is a colon (although this can be set to any letter using the separator table
attribute).

• Common C-style backslash escapes are supported.

• Blank lines are skipped.

Underline

A table Underline consists of a line of three or more fillchar characters which are end delimiters for table
header, footer and body sections.

Attribute List

The following optional table attributes can be specified in an AttributeList preceding the table:

separator
The default DSV format colon separator can be changed using the separator attribute. For example:
[separator="|"].

frame
Defines the table border and can take the following values: topbot (top and bottom), all (all sides),
none and sides (left and right sides). The default value is topbot.

grid
Defines which ruler lines are drawn between table rows and columns. The grid attribute value can be
any of the following values: none, cols, rows and all. The default value is none. For example
[frame="all", grid="none"].

AsciiDoc User Guide

47

format, tablewidth
See Markup Attributes below.

You can also use an AttributeList to override the following table definition and ruler parameters: format,
subs, tablewidth.

Markup Attributes

The following attributes are automatically available inside table tag and markup templates.

cols
The number of columns in the table.

colalign
Column alignment assumes one of three values (left, right or center). The value is determined by the
corresponding ruler column stop character (only valid inside colspec, headdata, bodydata and
footdata tags).

colwidth
The output column widths are calculated integers (only valid inside colspec, headdata, bodydata and
footdata tags).

colnumber
The table column number starting at 1 (only valid inside colspec, headdata, bodydata and footdata

tags).

format
The table definition format value (can be overridden with attribute list entry).

tablewidth
The ruler tablewidth value (can be overridden with attribute list entry).

pagewidth
The pagewidth miscellaneous configuration option.

pageunits
The pageunits miscellaneous configuration option.

The colwidth value is calculated as (N is the ruler column width number and M is the sum of the ruler
column widths):

(N / M) * pagewidth

If the ruler tablewidth was specified the column width is multiplied again by this value.

There is one exception: character rulers that have no pagewidth specified. In this case the colwidth value
is calculated as (where N is the column character width measured on the table ruler):

(N / textwidth) * pagewidth

AsciiDoc User Guide

48

The following attributes are available to the table markup template:

comspecs
Expands to N substituted comspec tags where N is the number of columns.

headrows, footrows, bodyrows
These references expand to sets of substituted header, footer and body rows as defined by the
corresponding row and data configuration parameters.

rows
Experimental attribute (number of source lines in table) available in table markup templates (used by
experimental LaTeX backend).

Manpage Documents
Sooner or later, if you program for a UNIX environment, you're going to have to write a man page.

By observing a couple of additional conventions you can compose AsciiDoc files that will translate to a
DocBook refentry (man page) document. The resulting DocBook file can then be translated to the native
roff man page format (or other formats).

For example, the asciidoc.1.txt file in the AsciiDoc distribution ./doc directory was used to generate
both the asciidoc.1.css-embedded.html HTML file the asciidoc.1 roff formatted asciidoc(1) man
page.

Viewing and printing manpage files

Use the man(1) command to view the manpage file (you must include a file path even if it's only
./ otherwise man(1) will look for the file in the system manpage locations):

$ man ./asciidoc.1

To print a high quality man page to a postscript printer:

$ groff -mandoc -Tps asciidoc.1 | lpr

To find out more about man pages view the man(7) manpage (man 7 man command).

Document Header
A document Header is mandatory. The title line contains the man page name followed immediately by the
manual section number in brackets, for example ASCIIDOC(1). The title name should not contain white
space and the manual section number is a single digit optionally followed by a single character.

The NAME Section
The first manpage section is mandatory, must be titled NAME and must contain a single paragraph

AsciiDoc User Guide

49

(usually a single line) consisting of a list of one or more comma separated command name(s) separated
from the command purpose by a dash character. The dash must have at least one white space character on
either side. For example:

printf, fprintf, sprintf - print formatted output

The SYNOPSIS Section
The second manpage section is mandatory and must be titled SYNOPSIS.

Configuration Files
AsciiDoc source file syntax and output file markup is largely controlled by a set of cascading, text based,
configuration files. At runtime The AsciiDoc default configuration files are combined with optional user
and document specific configuration files.

Configuration File Format
Configuration files contain named sections. Each section begins with a section name in square brackets [].
The section body consists of the lines of text between adjacent section headings.

• Section names consist of one or more alphanumeric, underscore or dash characters and cannot begin or
end with a dash.

• Lines starting with a hash character "#" are treated as comments and ignored.

• Same named sections and section entries override previously loaded sections and section entries (this is
sometimes referred to as cascading). Consequently, downstream configuration files need only contain
those sections and section entries that need to be overridden.

When creating custom configuration files you only need to include the sections and entries that
differ from the default configuration.

The best way to learn about configuration files is to read the default configuration files in the
AsciiDoc distribution in conjunction with asciidoc(1) output files. You can view
configuration file load sequence by turning on the asciidoc(1) -v (—verbose) command-line
option.

Markup Template Sections
Markup template sections supply backend markup for translating AsciiDoc elements. Since the text is
normally backend dependent you'll find these sections in the backend specific configuration files. A
markup template section body can contain:

• Backend markup

AsciiDoc User Guide

50

• Attribute references

• System macro calls.

• A document content placeholder

The document content placeholder is a single | character and is replaced by text from the source element.
Use the {brvbar} attribute reference if you need a literal | character in the template.

Special Sections
AsciiDoc reserves the following predefined special section names for specific purposes:

miscellaneous
Configuration options that don't belong anywhere else.

attributes
Attribute name/value entries.

specialcharacters
Special characters reserved by the backend markup.

tags
Backend markup tags.

quotes
Definitions for quoted inline character formatting.

specialwords
Lists of words and phrases singled out for special markup.

replacements, replacements2
Find and replace substitution definitions.

specialsections
Used to single out special section names for specific markup.

macros
Macro syntax definitions.

titles
Heading, section and block title definitions.

paradef*
Paragraph element definitions.

blockdef*
DelimitedBlock element definitions.

listdef*
List element definitions.

AsciiDoc User Guide

51

tabledef*
Table element definitions.

Each line of text in a special section is a section entry. Section entries share the following syntax:

name=value
The entry value is set to value.

name=
The entry value is set to a zero length string.

name
The entry is undefined (deleted from the configuration).

Section entry behavior

• All equals characters inside the name must be escaped with a backslash character. If you want the name

to end in a backslash then you need to place two backslashes at the end of the name.

• name and value are stripped of leading and trailing white space.

• Attribute names, tag entry names and markup template section names consist of one or more
alphanumeric, underscore or dash characters. Names should not begin or end with a dash.

• A blank configuration file section (one without any entries) deletes any preceding section with the same
name (applies to non-markup template sections).

Miscellaneous

The optional [miscellaneous] section specifies the following name=value options:

newline
Output file line termination characters. Can include any valid Python string escape sequences. The
default value is \r\n (carriage return, line feed). Should not be quoted or contain explicit spaces (use
\x20 instead). For example:

$ asciidoc -a 'newline=\n' -b docbook mydoc.txt

outfilesuffix
The default extension for the output file, for example outfilesuffix=.html. Defaults to backend
name.

tabsize
The number of spaces to expand tab characters, for example tabsize=4. Defaults to 8. A tabsize of
zero suppresses tab expansion (useful when piping included files through block filters). Included files
can override this option using the tabsize attribute.

AsciiDoc User Guide

52

textwidth, pagewidth, pageunits
These global table related options are documented in the Table Configuration File Definitions
sub-section.

[miscellaneous] configuration file entries can be set using the asciidoc(1) -a

(—attribute) command-line option.

Titles

sectiontitle
Two line section title pattern. The entry value is a Python regular expression containing the named
group title.

underlines
A comma separated list of document and section title underline character pairs starting with the
section level 0 and ending with section level 4 underline. The default setting is:

underlines="==","--","~~","^^","++"

sect0…sect4
One line section title patterns. The entry value is a Python regular expression containing the named
group title.

blocktitle
BlockTitle element pattern. The entry value is a Python regular expression containing the named
group title.

subs
A comma separated list of substitutions that are performed on the document header and section titles.
Defaults to normal substitution.

Tags

The [tags] section contains backend tag definitions (one per line). Tags are used to translate AsciiDoc
elements to backend markup.

An AsciiDoc tag definition is formatted like <tagname>=<starttag>|<endtag>. For example:

emphasis=|

In this example asciidoc(1) replaces the | character with the emphasized text from the AsciiDoc input
file and writes the result to the output file.

Use the {brvbar} attribute reference if you need to include a | pipe character inside tag text.

Attributes Section

The optional [attributes] section contains predefined attributes.

AsciiDoc User Guide

53

If the attribute value requires leading or trailing spaces then the text text should be enclosed in
double-quote (") characters.

To delete a attribute insert a name only entry in a downstream configuration file or use the asciidoc(1)

—attribute name! command-line option (the attribute name is suffixed with a ! character to delete it).

Special Characters

The [specialcharacters] section specifies how to escape characters reserved by the backend markup.
Each translation is specified on a single line formatted like:

special_character=translated_characters

Special characters are normally confined to those that resolve markup ambiguity (in the case of
SGML/XML markups the ampersand, less than and greater than characters). The following example
causes all occurrences of the < character to be replaced by <.

<=<

Quoted Text

Quoting is used primarily for text formatting. The [quotes] section defines AsciiDoc quoting characters
and their corresponding backend markup tags. Each section entry value is the name of a of a [tags]

section entry. The entry name is the character (or characters) that quote the text. The following examples
are taken from AsciiDoc configuration files:

[quotes]
_=emphasis

[tags]
emphasis=|

You can specify the left and right quote strings separately by separating them with a | character, for
example:

``|''=quoted

Omitting the tag will disable quoting, for example, if you don't want superscripts or subscripts put the
following in a custom configuration file or edit the global asciidoc.conf configuration file:

[quotes]
^=
~=

Unconstrained quotes are differentiated by prefixing the tag name with a hash character, for example:

__=#emphasis

Quoted text behavior

AsciiDoc User Guide

54

• Quote characters must be non-alphanumeric.

• To minimize quoting ambiguity try not to use the same quote characters in different quote types.

Special Words

The [specialwords] section is used to single out words and phrases that you want to consistently format
in some way throughout your document without having to repeatedly specify the markup. The name of
each entry corresponds to a markup template section and the entry value consists of a list of words and
phrases to be marked up. For example:

[specialwords]
strongwords=NOTE: IMPORTANT:

[strongwords]
{words}

The examples specifies that any occurrence of NOTE: or IMPORTANT: should appear in a bold font.

Words and word phrases are treated as Python regular expressions: for example, the word ^NOTE: would
only match NOTE: if appeared at the start of a line.

AsciiDoc comes with three built-in Special Word types: emphasizedwords, monospacedwords and
strongwords, each has a corresponding (backend specific) markup template section. Edit the configuration
files to customize existing Special Words and to add new ones.

Special word behavior

• Word list entries must be separated by space characters.

• Word list entries with embedded spaces should be enclosed in quotation (") characters.

• A [specialwords] section entry of the form name=word1 [word2…] adds words to existing name

entries.

• A [specialwords] section entry of the form name undefines (deletes) all existing name words.

• Since word list entries are processed as Python regular expressions you need to be careful to escape
regular expression special characters.

• By default Special Words are substituted before Inline Macros, this may lead to undesirable
consequences. For example the special word foobar would be expanded inside the macro call
http://www.foobar.com. A possible solution is to emphasize whole words only by defining the word
using regular expression characters, for example \bfoobar\b.

• If the first matched character of a special word is a backslash then the remaining characters are output
without markup i.e. the backslash can be used to escape special word markup. For example the special
word \\?\b[Tt]en\b will mark up the words Ten and ten only if they are not preceded by a backslash.

AsciiDoc User Guide

55

http://www.foobar.com

Replacements

[replacements] and [replacements2] configuration file entries specify find and replace text and are
formatted like:

find_pattern=replacement_text

The find text can be a Python regular expression; the replace text can contain Python regular expression
group references.

Use Replacement shortcuts for often used macro references, for example (the second replacement allows
us to backslash escape the macro name):

NEW!=image:./images/smallnew.png[New!]
\\NEW!=NEW!

Replacement behavior

• The built-in replacements can be escaped with a backslash.

• If the find or replace text has leading or trailing spaces then the text should be enclosed in quotation (")
characters.

• Since the find text is processed as a regular expression you need to be careful to escape regular
expression special characters.

• Replacements are performed in the same order they appear in the configuration file replacements
section.

Configuration File Names and Locations
Configuration files have a .conf file name extension; they are loaded implicitly (using predefined file
names and locations) or explicitly (using the asciidoc(1) -f (—conf-file) command-line option).

Implicit configuration files are loaded from the following directories in the following order:

1. The /etc/asciidoc directory (if it exists).

2. The directory containing the asciidoc executable.

3. The user's $HOME/.asciidoc directory (if it exists).

4. The directory containing the AsciiDoc source file.

The following implicit configuration files from each of the above locations are loaded in the following
order:

AsciiDoc User Guide

56

1. asciidoc.conf

2. <backend>.conf

3. <backend>-<doctype>.conf

4. lang-<lang>.conf

Where <backend> and <doctype> are values specified by the asciidoc(1) -b (—backend) and -d

(—doctype) command-line options. <lang> is the value of the AsciiDoc lang attribute (defaults to en

(English)).

Finally, configuration files named like the source file will be automatically loaded if they are found in the
source file directory. For example if the source file is mydoc.txt and the —backend=html4 option is used
then asciidoc(1) will look for mydoc.conf and mydoc-html4.conf in that order.

Implicit configuration files that don't exist will be silently skipped.

The user can explicitly specify additional configuration files using the asciidoc(1) -f (—conf-file)
command-line option. The -f option can be specified multiple times, in which case configuration files
will be processed in the order they appear on the command-line.

For example, when we translate our AsciiDoc document mydoc.txt with:

$ asciidoc -f extra.conf mydoc.txt

Configuration files (if they exist) will be processed in the following order:

1. First default global configuration files from the asciidoc program directory are loaded:

asciidoc.conf
xhtml11.conf

2. Then, from the users home ~/.asciidoc directory. This is were you put customization specific to your
own asciidoc documents:

asciidoc.conf
xhtml11.conf
xhtml11-article.conf

3. Next from the source document project directory (the first three apply to all documents in the
directory, the last two are specific to the mydoc.txt document):

asciidoc.conf
xhtml11.conf
xhtml11-article.conf
mydoc.conf
mydoc-xhtml11.conf

4. Finally the file specified by the -f command-line option is loaded:

extra.conf

AsciiDoc User Guide

57

Use the asciidoc(1) -v (—verbose) command-line option to see which configuration files are
loaded and the order in which they are loaded.

Document Attributes
A document attribute is comprised of a name and a textual value and is used for textual substitution in
AsciiDoc documents and configuration files. An attribute reference (an attribute name enclosed in braces)
is replaced by its corresponding attribute value.

There are four sources of document attributes (from highest to lowest precedence):

• Command-line attributes.

• AttributeEntry, AttributeList, Macro and BlockId elements.

• Configuration file [attributes] sections.

• Intrinsic attributes.

Within each of these divisions the last processed entry takes precedence.

If an attribute is not defined then the line containing the attribute reference is dropped. This
property is used extensively in AsciiDoc configuration files to facilitate conditional markup
generation.

Attribute Entries
The AttributeEntry block element allows document attributes to be assigned within an AsciiDoc
document. Attribute entries are added to the global document attributes dictionary. The attribute
name/value syntax is a single line like:

:<name>: <value>

For example:

:Author Initials: JB

This will set an attribute reference {authorinitials} to the value JB in the current document.

To delete (undefine) an attribute use the following syntax:

:<name>!:

AttributeEntry properties

AsciiDoc User Guide

58

4The existence of a {revisionhistory} attribute causes a revision history file (if it exists) to be included in DocBook outputs.
If a file named like {docname}-revhistory.xml exists in the document's directory then it will be added verbatim to the
DocBook header (see the ./doc/asciidoc-revhistory.xml example that comes with the AsciiDoc distribution).

• The attribute entry line begins with colon — no white space allowed in left margin.

• AsciiDoc converts the <name> to a legal attribute name (lower case, alphanumeric and dash characters
only — all other characters deleted). This allows more reader friendly text to be used.

• Leading and trailing white space is stripped from the <value>.

• If the <value> is blank then the corresponding attribute value is set to an empty string.

• Special characters in the entry <value> are substituted. To include special characters use the predefined
{gt}, {lt}, {amp} attribute references.

• Attribute references contained in the entry <value> will be expanded.

• By default AttributeEntry values are substituted for specialcharacters and attributes (see above),
if you want a different AttributeEntry substitution set the attributeentry-subs attribute.

• Attribute entries in the document Header are available for header markup template substitution.

• Attribute elements override configuration file and intrinsic attributes but do not override command-line
attributes.

Here's another example:

AsciiDoc User Manual
====================
:Author: Stuart Rackham
:Email: srackham@methods.co.nz
:Date: April 23, 2004
:Revision: 5.1.1
:Key words: linux, ralink, debian, wireless
:Revision history:

Which creates these attributes:

{author}, {firstname}, {lastname}, {authorinitials}, {email},
{date}, {revision}, {keywords}, {revisionhistory}

The preceding example is equivalent to the standard AsciiDoc two line document header. Actually it's a
little bit different with the addition of the {keywords} and {revisionhistory} attributes 4.

Attribute Lists
An attribute list is a comma separated list of attribute values. The entire list is enclosed in square brackets.
Attribute lists are used to pass parameters to macros, blocks and inline quotes.

The list consists of zero or more positional attribute values followed by zero or more named attribute

AsciiDoc User Guide

59

values. Here are three examples:

[Hello]
[Bertrand Russell, The World of Mathematics (1956)]
["22 times", backcolor="#0e0e0e", options="noborders,wide"]

Attribute lists are evaluated as a list of Python function arguments. If this fails or any of the items do not
evaluate to a string a number or None then all list items are treated as string literals.

Attribute list properties

• List attributes take precedence over existing attributes.

• List attributes can only be referenced in configuration file markup templates and tags, they are not
available inside the document.

• Attribute references are allowed inside attribute lists.

• If the list contains any named attributes the all string attribute values must be quoted.

• Setting a named attribute to None undefines the attribute.

• Positional attributes are referred to as {1},{2},{3},…

• Attribute {0} refers to the entire list (excluding the enclosing square brackets).

• If an attribute named options is present it is processed as a comma separated list of attributes with zero
length string values. For example [options="opt1,opt2,opt3"] is equivalent to
[opt1="",opt2="",opt2=""].

Macro Attribute lists
Macros calls are suffixed with an attribute list. The list may be empty but it cannot be omitted. List entries
are used to pass attribute values to macro markup templates.

AttributeList Element
An attribute list on a line by itself constitutes an AttributeList block element, its function is to parametrize
the following block element. The list attributes are passed to the next block element for markup template
substitution.

Attribute References
An attribute references is an attribute name (possibly followed by an additional parameters) enclosed in
braces. When an attribute reference is encountered it is evaluated and replaced by its corresponding text
value. If the attribute is undefined the line containing the attribute is dropped.

There are three types of attribute reference: Simple, Conditional and System.

AsciiDoc User Guide

60

Attribute reference behavior

• You can suppress attribute reference expansion by placing a backslash character immediately in front
of the opening brace character.

• By default attribute references are not expanded in LiteralParagraphs, ListingBlocks or LiteralBlocks.

Simple Attributes References
Simple attribute references take the form {<name>}. If the attribute name is defined its text value is
substituted otherwise the line containing the reference is dropped from the output.

Conditional Attribute References
Additional parameters are used in conjunction with the attribute name to calculate a substitution value.
Conditional attribute references take the following forms:

{<name>=<value>}

<value> is substituted if the attribute <name> is undefined otherwise its value is substituted. <value>
can contain simple attribute references.

{<name>?<value>}

<value> is substituted if the attribute <name> is defined otherwise an empty string is substituted.
<value> can contain simple attribute references.

{<name>!<value>}

<value> is substituted if the attribute <name> is undefined otherwise an empty string is substituted.
<value> can contain simple attribute references.

{<name>#<value>}

<value> is substituted if the attribute <name> is defined otherwise the undefined attribute entry causes
the containing line to be dropped. <value> can contain simple attribute references.

{<name>%<value>}

<value> is substituted if the attribute <name> is not defined otherwise the containing line is dropped.
<value> can contain simple attribute references.

{<name>@<regexp>:<value1>[:<value2>]}

<value1> is substituted if the value of attribute <name> matches the regular expression <regexp>

otherwise <value2> is substituted. If attribute <name> is not defined the containing line is dropped. If
<value2> is omitted an empty string is assumed. The values and the regular expression can contain
simple attribute references. To embed colons in the values or the regular expression escape them with
backslashes.

{<name>$<regexp>:<value1>[:<value2>]}

Same behavior as the previous ternary attribute except for the following cases:

{<name>$<regexp>:<value>}

Substitutes <value> if <name> matches <regexp> otherwise the result is undefined and the containing

AsciiDoc User Guide

61

line is dropped.

{<name>$<regexp>::<value>}

Substitutes <value> if <name> does not match <regexp> otherwise the result is undefined and the
containing line is dropped.

Conditional attribute examples

Conditional attributes are mainly used in AsciiDoc configuration files — see the distribution .conf files
for examples.

Attribute equality test
If {backend} is docbook or xhtml11 the example evaluates to “DocBook or XHTML backend”
otherwise it evaluates to “some other backend”:

{backend@docbook|xhtml11:DocBook or XHTML backend:some other backend}

Attribute value map
This example maps the frame attribute values [topbot, all, none, sides] to [hsides, border, void,
vsides]:

{frame@topbot:hsides}{frame@all:border}{frame@none:void}{frame@sides:vsides}

System Attribute References
System attribute references generate the attribute text value by executing a predefined action that is
parametrized by a single argument. The syntax is {<action>:<argument>}.

{eval:<expression>}

Substitutes the result of the Python <expression>. If <expression> evaluates to None or False the
reference is deemed undefined and the line containing the reference is dropped from the output. If the
expression evaluates to True the attribute evaluates to an empty string. In all remaining cases the
attribute evaluates to a string representation of the <expression> result.

{include:<filename>}

Substitutes contents of the file named <filename>.

• The included file is read at the time of attribute substitution.

• If the file does not exist a warning is emitted and the line containing the reference is dropped from
the output file.

• Tabs are expanded based on the current tabsize attribute value.

{sys:<command>}

Substitutes the stdout generated by the execution of the shell <command>.

{sys2:<command>}

Substitutes the stdout and stderr generated by the execution of the shell <command>.

AsciiDoc User Guide

62

System reference behavior

• System attribute arguments can contain non-system attribute references.

• Closing brace characters inside system attribute arguments must be escaped them with a backslash.

Intrinsic Attributes
Intrinsic attributes are simple attributes that are created automatically from AsciiDoc document header
parameters, asciidoc(1) command-line arguments, execution parameters along with attributes defined in
the default configuration files. Here's the list of predefined intrinsic attributes:

{asciidoc-dir} the asciidoc(1) application directory
{asciidoc-version} the version of asciidoc(1)
{author} author's full name
{authored} empty string '' if {author} or {email} defined,
{authorinitials} author initials (from document header)
{backend-<backend>} empty string ''
{<backend>-<doctype>} empty string ''
{backend} document backend specified by `-b` option
{basebackend-<base>} empty string ''
{basebackend} html or docbook
{brvbar} broken vertical bar (|) character
{date} document date (from document header)
{docname} document file name without extension
{doctitle} document title (from document header)
{doctype-<doctype>} empty string ''
{doctype} document type specified by `-d` option
{email} author's email address (from document header)
{empty} empty string ''
{filetype-<fileext>} empty string ''
{filetype} output file name file extension
{firstname} author first name (from document header)
{gt} greater than (>) character
{id} running block id generated by BlockId elements
{indir} document input directory name (note 1)
{infile} input file name (note 1)
{lastname} author last name (from document header)
{listindex} the list index (1..) of the most recent list item
{localdate} the current date
{localtime} the current time
{lt} less than (<) character
{manname} manpage name (defined in NAME section)
{manpurpose} manpage (defined in NAME section)
{mantitle} document title minus the manpage volume number
{manvolnum} manpage volume number (1..8) (from document header)
{middlename} author middle name (from document header)
{outdir} document output directory name (note 1)
{outfile} output file name (note 1)
{revision} document revision number (from document header)
{sectnum} section number (in section titles)
{title} section title (in titled elements)
{user-dir} the ~/.asciidoc directory (if it exists)
{verbose} defined as '' if --verbose command option specified

NOTES

1. Intrinsic attributes are global so avoid defining custom attributes with the same names.

AsciiDoc User Guide

63

5Conditional inclusion using ifdef and ifndef macros differs from attribute conditional inclusion in that the former occurs
when the file is read while the latter occurs when the contents are written.

2. {infile}, {outdir}, {infile}, {indir} attributes are effectively read-only (you can set them but it
won't affect the input or output file paths).

3. See also the xhtml11 subsection for attributes that relate to AsciiDoc XHTML file generation.

4. The entries that translate to blank strings are designed to be used for conditional text inclusion. You
can also use the ifdef, ifndef and endif System macros for conditional inclusion. 5

Block Element Definitions
The syntax and behavior of Paragraph, DelimitedBlock, List and Table block elements is determined by
block definitions contained in AsciiDoc configuration file sections.

Each definition consists of a section title followed by one or more section entries. Each entry defines a
block parameter controlling some aspect of the block's behavior. Here's an example:

[blockdef-listing]
delimiter=^-{4,}$
template=listingblock
presubs=specialcharacters,callouts

AsciiDoc Paragraph, DelimitedBlock, List and Table block elements share a common subset of
configuration file parameters:

delimiter
A Python regular expression that matches the first line of a block element — in the case of
DelimitedBlocks it also matches the last line. Table elements don't have an explicit delimiter — they
synthesize their delimiters at runtime.

template
The name of the configuration file markup template section that will envelope the block contents. The
pipe | character is substituted for the block contents. List elements use a set of (list specific) tag
parameters instead of a single template.

options
A comma delimited list of element specific option names.

subs, presubs, postsubs

• presubs and postsubs are lists of comma separated substitutions that are performed on the block
contents. presubs is applied first, postsubs (if specified) second.

• subs is an alias for presubs.

• If a filter is allowed (Paragraphs and DelimitedBlocks) and has been specified then presubs and
postsubs substitutions are performed before and after the filter is run respectively.

• Allowed values: specialcharacters, quotes, specialwords, replacements, macros, attributes,
callouts.

AsciiDoc User Guide

64

• The following composite values are also allowed:

none
No substitutions.

normal
The following substitutions: specialcharacters,quotes,attributes,specialwords,
replacements,macros,passthroughs.

verbatim
specialcharacters and callouts substitutions.

• normal and verbatim substitutions can be redefined by with subsnormal and subsverbatim entries
in a configuration file [misc] section.

• The substitutions are processed in the order in which they are listed and can appear more than once.

filter
This optional entry specifies an executable shell command for processing block content (Paragraphs
and DelimitedBlocks). The filter command can contain attribute references.

posattrs
Optional comma separated list of positional attribute names. This list maps positional attributes (in the
block's attribute list) to named block attributes. The following example, from the QuoteBlock
definition, maps the first and section positional attributes:

posattrs=attribution,citetitle

style
This optional parameter specifies the default style name.

<stylename>-style
Optional style definition (see Styles below).

The following block parameters behave like document attributes and can be set in block attribute lists and
style definitions: template, options, subs, presubs, postsubs, filter.

Styles
A style is a set of block attributes bundled as a single named attribute. The following example defines a
style named verbatim:

verbatim-style=template="literalblock",subs="verbatim",font="monospaced"

All style parameter names must be suffixed with -style and the style parameter value is in the form of a
list of named attributes.

Paragraphs
Paragraph translation is controlled by [paradef*] configuration file section entries. Users can define new
types of paragraphs and modify the behavior of existing types by editing AsciiDoc configuration files.

AsciiDoc User Guide

65

Here is the shipped Default paragraph definition:

[paradef-default]
delimiter=(?P<text>\S.*)
template=paragraph

The Default paragraph definition has a couple of special properties:

1. It must exist and be defined in a configuration file section named [paradef-default].

2. Irrespective of its position in the configuration files default paragraph document matches are attempted
only after trying all other paragraph types.

Paragraph specific block parameter notes:

delimiter
This regular expression must contain the named group text which matches the text on the first line.
Paragraphs are terminated by a blank line, the end of file, or the start of a DelimitedBlock.

options
The only allowable option is listelement. The listelement option specifies that paragraphs of this type
will automatically be considered part of immediately preceding list items.

Paragraph processing proceeds as follows:

1. The paragraph text is aligned to the left margin.

2. Optional presubs inline substitutions are performed on the paragraph text.

3. If a filter command is specified it is executed and the paragraph text piped to its standard input; the
filter output replaces the paragraph text.

4. Optional postsubs inline substitutions are performed on the paragraph text.

5. The paragraph text is enveloped by the paragraph's markup template and written to the output file.

Delimited Blocks
DelimitedBlock specific block definition notes:

options
Allowed values are:

sectionbody
The block contents are processed as a SectionBody.

AsciiDoc User Guide

66

skip
The block is treated as a comment (see CommentBlocks).

list
The block is a list block.

presubs, postsubs and filter entries are meaningless when sectionbody, skip or list options are set.

DelimitedBlock processing proceeds as follows:

1. Optional presubs substitutions are performed on the block contents.

2. If a filter is specified it is executed and the block's contents piped to its standard input. The filter output
replaces the block contents.

3. Optional postsubs substitutions are performed on the block contents.

4. The block contents is enveloped by the block's markup template and written to the output file.

Attribute expansion is performed on the block filter command before it is executed, this is
useful for passing arguments to the filter.

Lists
List behavior and syntax is determined by [listdef*] configuration file sections. The user can change
existing list behavior and add new list types by editing configuration files.

List specific block definition notes:

type
This is either bulleted,numbered,labeled or callout.

delimiter
A Python regular expression that matches the first line of a list element entry. This expression must
contain the named group text which matches text in the first line.

subs
Substitutions that are performed on list item text and terms.

listtag
The name of the tag that envelopes the List.

itemtag
The name of the tag that envelopes the ListItem.

texttag
The name of the tag that envelopes the list item text.

AsciiDoc User Guide

67

labeltag
The name of the tag that envelopes a variable list label.

entrytag
The name of the tag that envelopes a labeled list entry.

The tag entries map the AsciiDoc list structure to backend markup; see the AsciiDoc distribution .conf

configuration files for examples.

Tables
Table behavior and syntax is determined by [tabledef*] configuration file sections. The user can
change existing list behavior and add new list types by editing configuration files.

Table specific block definition notes:

fillchar
A single character that fills table ruler and underline lines.

subs
Substitutions performed on table data items.

format
The source row data format (fixed, csv or dsv).

comspec
The table comspec tag definition.

headrow, footrow, bodyrow
Table header, footer and body row tag definitions. headrow and footrow table definition entries
default to bodyrow if they are undefined.

headdata, footdata, bodydata
Table header, footer and body data tag definitions. headdata and footdata table definition entries
default to bodydata if they are undefined.

Table behavior is also influenced by the following [miscellaneous] configuration file entries:

textwidth
The page width (in characters) of the source text. This setting is compared to the the table ruler width
when calculating the relative size of character ruler tables on the output page.

pagewidth
This integer value is the printable width of the output media. Used to calculate colwidth and
tablewidth substitution values.

pageunits
The units of width in output markup width attribute values.

AsciiDoc User Guide

68

Table definition behavior

• The output markup generation is specifically designed to work with the HTML and CALS (DocBook)
table models, but should be adaptable to most XML table schema.

• Table definitions can be “mixed in” from multiple cascading configuration files.

• New table definitions inherit the default table definition ([tabledef-default]) so you only need to
override those conf file entries that require modification when defining a new table type.

Filters
Filters are external shell commands used to process Paragraph and DelimitedBlock content; they are
specified in configuration file Paragraph and DelimitedBlock definitions.

There's nothing special about the filters, they're just standard UNIX filters: they read text from the
standard input, process it, and write to the standard output.

Attribute substitution is performed on the filter command prior to execution — attributes can be used to
pass parameters from the AsciiDoc source document to the filter.

Filters can potentially generate unsafe output. Before installing a filter you should verify that it
can't be coerced into generating malicious output or exposing sensitive information.

Filter functionality is currently only available on POSIX platforms (this includes Cygwin).

Filter Search Paths
If the filter command does not specify a directory path then asciidoc(1) searches for the command:

• First it looks in the user's $HOME/.asciidoc/filters directory.

• Next the /etc/asciidoc/filters directory is searched.

• Then it looks in the asciidoc(1) ./filters directory.

• Finally it relies on the executing shell to search the environment search path ($PATH).

Filter Configuration Files
Filters are normally accompanied by a configuration file containing a filter Paragraph or filter
DelimitedBlock definition and corresponding markup templates.

AsciiDoc User Guide

69

By convention delimiters belonging to DelimitedBlock filters distributed with AsciiDoc consist of a word
(normally a noun identifying the block content) followed by four or more tilde characters.

asciidoc(1) auto-loads all .conf files found in the filter search paths (see previous section).

Code Filter
AsciiDoc comes with a simple minded for highlighting source code keywords and comments. See also the
./filters/code-filter-readme.txt file.

This filter primarily to demonstrate how to write a filter — it's much to simplistic to be passed
off as a code syntax highlighter. If you want a full featured multi-language highlighter use the
Source Code Highlighter Filter.

.Code filter example
[python]
code~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
''' A multi-line

comment.'''
def sub_word(mo):

''' Single line comment.'''
word = mo.group('word') # Inline comment
if word in keywords[language]:

return quote + word + quote
else:

return word
code~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Outputs:

Example 5. Code filter example

''' A multi-line
comment.'''

def sub_word(mo):
''' Single line comment.'''
word = mo.group('word') # Inline comment
if word in keywords[language]:

return quote + word + quote
else:

return word

Source Code Highlighter Filter
A source code highlighter filter [http://www.methods.co.nz/asciidoc/source-highlight-filter.html] can be
found in the AsciiDoc distribution ./filters directory. It uses GNU source-highlight
[http://www.gnu.org/software/src-highlite/] to generate nicely formatted source code for most common
programming languages.

Music Filter

AsciiDoc User Guide

70

http://www.methods.co.nz/asciidoc/source-highlight-filter.html
http://www.methods.co.nz/asciidoc/source-highlight-filter.html
http://www.gnu.org/software/src-highlite/
http://www.gnu.org/software/src-highlite/

A music filter [http://www.methods.co.nz/asciidoc/music-filter.html] is included in the distribution
./filters directory. It translates music in LilyPond [http://lilypond.org/] or ABC
[http://abcnotation.org.uk/] notation to standard Western classical notation in the form of a trimmed PNG
image which is automatically inserted into the output document.

Converting DocBook to other file formats
DocBook files are validated, parsed and translated by a combination of applications collectively called a
DocBook tool chain. The function of a tool chain is to read the DocBook markup (produced by AsciiDoc)
and transform it to a presentation format (for example HTML, PDF, HTML Help).

A wide range of user output format requirements coupled with a choice of available tools and stylesheets
results in many valid tool chain combinations.

The DocBook toolchain currently used for processing AsciiDoc documentation is xsltproc(1), FOP and
DocBook XSL Stylesheets. These tools are freely available for Linux and Windows systems.

Why Generate HTML via DocBook?

AsciiDoc produces nicely styled HTML directly without requiring a DocBook toolchain but there
are also advantages in going the DocBook route:

• HTML from DocBook includes automatically generated indexes, tables of contents, footnotes,
lists of figures and tables.

• DocBook toolchains can also (optionally) generate separate (chunked) linked HTML pages for
each document section.

• Toolchain processing performs link and document validity checks.

• If the DocBook lang attribute is set then things like table of contents, revision history, figure
and table captions and admonition captions will be output in the specified language (setting the
AsciiDoc lang attribute sets the DocBook lang attribute).

On the other hand, HTML output directly from AsciiDoc is much faster, is easily customized and
can be used in situations where there is no suitable DocBook toolchain (see the AsciiDoc website
[http://www.methods.co.nz/asciidoc/] for example).

If you require output formats other than HTML you would feed AsciiDoc's DocBook output to a
DocBook toolchain. The distributed PDF documents have been generated in this way.

The toolchain processing steps are:

1. Convert AsciiDoc (*.txt) documents to DocBook XML (*.xml) using AsciiDoc.

2. Convert DocBook XML documents to HTML, XSL-FO or HTML Help files using DocBook XSL
Stylesheets and the xsltproc(1) XML parser.

AsciiDoc User Guide

71

http://www.methods.co.nz/asciidoc/music-filter.html
http://www.methods.co.nz/asciidoc/music-filter.html
http://lilypond.org/
http://lilypond.org/
http://abcnotation.org.uk/
http://abcnotation.org.uk/
http://www.methods.co.nz/asciidoc/
http://www.methods.co.nz/asciidoc/

3. Convert the XSL-FO (*.fo) files to PDF using FOP and HTML Help source (*.hhp) files to HTML
Help (*.chm) files using the Microsoft HTML Help Compiler.

These steps can be automated by using the AsciiDoc a2x(1) toolchain wrapper command.

Lazy DocBook Conversion

Depending on your Linux distribution toolchain installation can be a mission for users used to a
GUI environment, even more so under Microsoft Windows. So you may like to try the XMLmind
FO Converter [http://www.xmlmind.com/foconverter/], it contains a GUI XSL Utility which
makes a creditable job of converting AsciiDoc generated DocBook files to RTF, HTML and Open
Document formats. The FO Converter Personal Edition can be used free of charge and a
Windows installer is available and there is also a UNIX version. Thanks to Matthew Marshall for
this tip.

a2x Toolchain Wrapper
One of the biggest hurdles for new users seems to be using a DocBook XML toolchain. a2x(1) can help
— it's a toolchain wrapper command that will generate XHTML (chunked and unchunked), PDF, man
page, HTML Help and text file outputs from an AsciiDoc text file. a2x(1) does all the grunt work
associated with generating and sequencing the toolchain commands and managing intermediate and
output files. a2x(1) also optionally deploys admonition and navigation icons and a CSS stylesheet. See
the a2x(1) man page for more details. All you need is xsltproc(1), DocBook XSL Stylesheets and
optionally FOP (if you want PDF) or lynx(1) (if you want text).

The following example generates doc/quickstart.pdf from the AsciiDoc doc/quickstart.txt source
file:

$ a2x -f pdf --icons doc/quickstart.txt

See the a2x(1) man page for details.

Use the —verbose command-line option to view executed toolchain commands.

Toolchain Components

AsciiDoc
Converts AsciiDoc (*.txt) files to DocBook XML (*.xml) files.

DocBook XSL Stylesheets [http://docbook.sourceforge.net/projects/xsl/]
These are a set of XSL stylesheets containing rules for converting DocBook XML documents to
HTML, XSL-FO, manpage and HTML Help files. The stylesheets are used in conjunction with an
XML parser such as xsltproc(1).

AsciiDoc User Guide

72

http://www.xmlmind.com/foconverter/
http://www.xmlmind.com/foconverter/
http://www.xmlmind.com/foconverter/
http://docbook.sourceforge.net/projects/xsl/
http://docbook.sourceforge.net/projects/xsl/

xsltproc [http://www.xmlsoft.org]
xsltproc is a command line XML parser for applying XSLT stylesheets (in our case the DocBook
XSL Stylesheets) to XML documents.

FOP
The Apache Formatting Objects Processor converts XSL-FO (*.fo) files to PDF files (see the FOP
section).

Microsoft Help Compiler
The Microsoft HTML Help Compiler (hhc.exe) is a command-line tool that converts HTML Help
source files to a single HTML Help (*.chm) file. It runs on MS Windows platforms and can be
downloaded from http://www.microsoft.com.

AsciiDoc DocBook XSL Drivers
You will have noticed that the distributed PDF, HTML and HTML Help documentation files (for example
./doc/asciidoc.html) are not the plain outputs produced using the default DocBook XSL Stylesheets
configuration. This is because they have been processed using customized DocBook XSL Stylesheet
drivers along with (in the case of HTML outputs) the custom ./stylesheets/docbook.css CSS
stylesheet.

You'll find the customized DocBook XSL drivers along with additional documentation in the distribution
./docbook-xsl directory. The examples that follow are executed from the distribution documentation
(./doc) directory.

common.xsl

Shared driver parameters. This file is not used directly but is included in all the following drivers.

chunked.xsl

Generate chunked XHTML (separate HTML pages for each document section) in the ./doc/chunked

directory. For example:

$ python ../asciidoc.py -b docbook asciidoc.txt
$ xsltproc --nonet ../docbook-xsl/chunked.xsl asciidoc.xml

fo.xsl

Generate XSL Formatting Object (*.fo) files for subsequent PDF file generation using FOP. For
example:

$ python ../asciidoc.py -b docbook article.txt
$ xsltproc --nonet ../docbook-xsl/fo.xsl article.xml > article.fo
$ fop.sh article.fo article.pdf

htmlhelp.xsl

Generate Microsoft HTML Help source files for the MS HTML Help Compiler in the
./doc/htmlhelp directory. This example is run on MS Windows from a Cygwin shell prompt:

$ python ../asciidoc.py -b docbook asciidoc.txt
$ xsltproc --nonet ../docbook-xsl/htmlhelp.xsl asciidoc.xml
$ c:/Program\ Files/HTML\ Help\ Workshop/hhc.exe htmlhelp.hhp

AsciiDoc User Guide

73

http://www.xmlsoft.org
http://www.xmlsoft.org
http://www.microsoft.com

manpage.xsl

Generate a roff(1) format UNIX man page from a DocBook XML refentry document. This example
generates an asciidoc.1 man page file:

$ python ../asciidoc.py -d manpage -b docbook asciidoc.1.txt
$ xsltproc --nonet ../docbook-xsl/manpage.xsl asciidoc.1.xml

xhtml.xsl

Convert a DocBook XML file to a single XHTML file. For example:

$ python ../asciidoc.py -b docbook asciidoc.txt
$ xsltproc --nonet ../docbook-xsl/xhtml.xsl asciidoc.xml > asciidoc.html

If you want to see how the complete documentation set is processed take a look at the A-A-P script
./doc/main.aap.

FOP
XSL Stylesheets can be used to generate FO (Formatting Object) files, which in turn can be used to
produce PDF files using the Apache Formatting Object Processor program (FOP). The FOP home page is
at http://xml.apache.org/fop/.

As of version 0.20.5 installation and configuration of FOP is a manual process. You also need a working
Java Runtime to run FOP. You'll find FOP and Java installation information in the appendices.

Once you've got FOP installed use the AsciiDoc a2x(1) toolchain wrapper to generate PDF
files from AsciiDoc source.

Generating Plain Text Files
AsciiDoc does not have a text backend (for most purposes AsciiDoc source text is fine), however you can
convert AsciiDoc text files to formatted text using the AsciiDoc a2x(1) toolchain wrapper utility.

XML and Character Sets
The default XML character set UTF-8 is used when AsciiDoc generates DocBook files but this can be
changed by setting the xmldecl entry in the [attributes] section of the docbook.conf file or by
composing your own configuration file [header] section).

If you get an undefined entity error when processing DocBook files you'll may find that you've
used an undefined HTML character entity. An easy (although inelegant) fix is to use the
character's character code instead of its symbolic name (for example use instead of
).

If your system has been configured with an XML catalog you may find a number of entity sets are already
automatically included.

AsciiDoc User Guide

74

http://xml.apache.org/fop/

PDF Fonts
The Adobe PDF Specification states that the following 14 fonts should be available to every PDF reader:
Helvetica (normal, bold, italic, bold italic), Times (normal, bold, italic, bold italic), Courier (normal, bold,
italic, bold italic), Symbol and ZapfDingbats. Non-standard fonts should be embedded in the distributed
document.

Help Commands
The asciidoc(1) command has a --help option which prints help topics to stdout. The default topic
summarizes asciidoc(1) usage:

$ asciidoc --help

To print a list of help topics:

$ asciidoc --help=topics

To print a help topic specify the topic name as a command argument. Help topic names can be shortened
so long as they are not ambiguous. Examples:

$ asciidoc --help=manpage
$ asciidoc -hm # Short version of previous example.
$ asciidoc --help=syntax
$ asciidoc -hs # Short version of previous example.

Customizing Help
To change, delete or add your own help topics edit a help configuration file. The help file name
help-<lang>.conf is based on the setting of the lang attribute, it defaults to help.conf (English). The
help file location will depend on whether you want the topics to apply to all users or just the current user.

The help topic files have the same named section format as other configuration files. The help.conf files
are stored in the same locations and loaded in the same order as other configuration files.

When the --help command-line option is specified AsciiDoc loads the appropriate help files and then
prints the contents of the section whose name matches the help topic name. If a topic name is not
specified default is used. You don't need to specify the whole help topic name on the command-line, just
enough letters to ensure it's not ambiguous. If a matching help file section is not found a list of available
topics is printed.

Tips and Tricks
Know Your Editor

Writing AsciiDoc documents will be a whole lot more pleasant if you know your favorite text editor.
Learn how to indent and reformat text blocks, paragraphs, lists and sentences. Tips for vim users follow.

Vim Commands for Formatting AsciiDoc

AsciiDoc User Guide

75

Text Wrap Paragraphs

Use the vim :gq command to reformat paragraphs. Setting the textwidth sets the right text wrap margin;
for example:

:set textwidth=70

To reformat a paragraph:

1. Position the cursor at the start of the paragraph.

2. Type gq}.

Execute :help gq command to read about the vim gq command.

• Assign the gq} command to the Q key with the nnoremap Q gq} command or put it in your
~/.vimrc file to so it's always available (see the Example ~/.vimrc file).

• Put set commands in your ~/.vimrc file so you don't have to enter them manually
Example ~/.vimrc file).

• The Vim website (http://www.vim.org) has a wealth of resources, including scripts for
automated spell checking and ASCII Art drawing.

Format Lists

The gq command can also be used to format bulleted and numbered lists. First you need to set the
comments and formatoptions (see the Example ~/.vimrc file).

Now you can format simple lists that use dash, asterisk, period and plus bullets along with numbered
ordered lists:

1. Position the cursor at the start of the list.

2. Type gq}.

Indent Paragraphs

Indent whole paragraphs by indenting the fist line with the desired indent and then executing the gq}

command.

Example ~/.vimrc File
" Show tabs and trailing characters.
set listchars=tab:»·,trail:·
set list

AsciiDoc User Guide

76

http://www.vim.org

" Don't highlight searched text.
highlight clear Search

" Don't move to matched text while search pattern is being entered.
set noincsearch

" Q command to reformat paragraphs and list.
nnoremap Q gq}

" W command to delete trailing white space and Dos-returns and to expand tabs
" to spaces.
nnoremap W :%s/[\r \t]\+$//<CR>:set et<CR>:retab!<CR>

autocmd BufRead,BufNewFile *.txt,README,TODO,CHANGELOG,NOTES
\ setlocal autoindent expandtab tabstop=8 softtabstop=2 shiftwidth=2
\ textwidth=70 wrap formatoptions=tcqn
\ comments=s1:/*,ex:*/,://,b:#,:%,:XCOMM,fb:-,fb:*,fb:+,fb:.,fb:>

Troubleshooting

• The asciidoc(1) -v (—verbose) command-line option displays the order of configuration file loading
and warns of potential configuration file problems.

• Not all valid AsciiDoc documents produce valid backend markup. Read the AsciiDoc Backends section
if AsciiDoc output is rejected as non-conformant by a backend processor.

Gotchas

Incorrect character encoding
If you get an error message like 'UTF-8' codec can't decode … then you source file contains
invalid UTF-8 characters — set the AsciiDoc encoding attribute for the correct character set (typically
ISO-8859-1 (Latin-1) for European languages).

Misinterpreted text formatting
If text in your document is incorrectly interpreted as formatting instructions you can suppress
formatting by placing a backslash character immediately in front of the leading quote character(s). For
example in the following line the backslash prevents text between the two asterisks from being output
in a strong (bold) font:

Add `*.cs` files and `*.resx` files.

Overlapping text formatting
Overlapping text formatting will generate illegal overlapping markup tags which will result in
downstream XML parsing errors. Here's an example:

Some *strong markup _that overlaps* emphasized markup_.

Ambiguous underlines
A DelimitedBlock can immediately follow paragraph without an intervening blank line, but be
careful, a single line paragraph underline may be misinterpreted as a section title underline resulting in
a “closing block delimiter expected” error.

AsciiDoc User Guide

77

Ambiguous ordered list items
Lines beginning with numbers at the end of sentences will be interpreted as ordered list items. The
following example (incorrectly) begins a new list with item number 1999:

He was last sighted in
1999. Since then things have moved on.

The list item out of sequence warning makes it unlikely that this problem will go unnoticed.

Escaping inside DSV table data
Delimiter separated text uses C style backslash escape sequences. If you want to enter a backslash (for
example, to escape AsciiDoc text formatting or an inline macro) you need to escape it by entering two
backslashes.

Special characters in attribute values
Special character substitution precedes attribute substitution so if attribute values contain special
characters you may, depending on the substitution context, need to escape the special characters
yourself. For example:

$ asciidoc -a 'companyname=Bill & Ben' mydoc.txt

Macro attribute lists
If named attribute list entries are present then all string attribute values must be quoted. For example:

["Desktop screenshot",width=32]

Combining Separate Documents
You have a number of stand-alone AsciiDoc documents that you want to process as a single document.
Simply processing them with a series of include macros won't work, because instead of starting at level
1 the section levels of the combined document start at level 0 (the document title level).

The solution is to redefine the title underlines so that document and section titles are pushed down one
level.

1. Push the standard title underlines down one level by defining a new level 0 underline in a custom
configuration file. For example combined.conf:

[titles]
underlines="__","==","--","~~","^^"

2. If you use single line titles you'll need to make corresponding adjustments to the [titles] section
sect0…sect4 entries.

3. Create a top level wrapper document. For example combined.txt:

Combined Document Title

include::document1.txt[]

include::document2.txt[]

AsciiDoc User Guide

78

include::document3.txt[]

4. Process the wrapper document. For example:

$ asciidoc --conf-file=combined.conf combined.txt

Actually the —conf-file option is unnecessary as asciidoc(1) automatically looks for a same-named
.conf file.

• The combined document title uses the newly defined level 0 underline (underscore characters).

• Put a blank line between the include macro lines to ensure the title of the included document is not
seen as part of the last paragraph of the previous document.

• You won't want document Headers (Author and Revision lines) in the included files — conditionally
exclude them if they are necessary for stand-alone processing.

Processing Document Sections Separately
You have divided your AsciiDoc document into separate files (one per top level section) which are
combined and processed with the following top level document:

Combined Document Title
=======================
Joe Bloggs
v1.0, 12-Aug-03

include::section1.txt[]

include::section2.txt[]

include::section3.txt[]

You also want to process the section files as separate documents. This is easy because asciidoc(1) will
quite happily process section1.txt, section2.txt and section3.txt separately.

If you want to promote the section levels up one level, so the document is processed just like a
stand-alone document, then pop the section underline definition up one level:

[titles]
underlines="--","~~","^^","++","__"

The last "__" underline is a dummy that won't actually be used but is necessary to legitimize the
underline definition.

This is just the reverse of the technique used for combining separate documents explained in the previous
section.

Processing Document Chunks

AsciiDoc User Guide

79

asciidoc(1) can be used as a filter, so you can pipe chunks of text through it. For example:

$ echo 'Hello *World!*' | asciidoc -s -
<div class="para"><p>Hello World!</p></div>

The -s (—no-header-footer) command-line option suppresses header and footer output and is useful if
the processed output is to be included in another file.

Badges in HTML Page Footers
See the [footer] section in the AsciiDoc distribution xhtml11.conf configuration file.

Pretty Printing AsciiDoc Output
If the indentation and layout of the asciidoc(1) output is not to your liking you can:

1. Change the indentation and layout of configuration file markup template sections. The {empty}

glossary entry is useful for outputting trailing blank lines in markup templates.

2. Or use Dave Raggett's excellent HTML Tidy program to tidy asciidoc(1) output. Example:

$ asciidoc -b docbook -o - mydoc.txt | tidy -indent -xml >mydoc.xml

HTML Tidy can be downloaded from http://tidy.sourceforge.net/

Supporting Minor DocBook DTD Variations
The conditional inclusion of DocBook SGML markup at the end of the distribution docbook.conf file
illustrates how to support minor DTD variations. The included sections override corresponding entries
from preceding sections.

Shipping Stand-alone AsciiDoc Source
Reproducing presentation documents from someone else's source has one major problem: unless your
configuration files are the same as the creator's you won't get the same output.

The solution is to create a single backend specific configuration file using the asciidoc(1) -c

(—dump-conf) command-line option. You then ship this file along with the AsciiDoc source document
plus the asciidoc.py script. The only end user requirement is that they have Python installed (and of
course that they consider you a trusted source). This example creates a composite HTML configuration
file for mydoc.txt:

$ asciidoc -cb xhtml11 mydoc.txt > mydoc-xhtml11.conf

Ship mydoc.txt, mydoc-html.conf, and asciidoc.py. With these three files (and a Python interpreter)
the recipient can regenerate the HMTL output:

$./asciidoc.py -eb xhtml11 mydoc.txt

AsciiDoc User Guide

80

http://tidy.sourceforge.net/

The -e (—no-conf) option excludes the use of implicit configuration files, ensuring that only entries from
the mydoc-html.conf configuration are used.

Inserting Blank Space
Adjust your style sheets to add the correct separation between block elements. Inserting blank paragraphs
containing a single non-breaking space character {nbsp} works but is an ad hoc solution compared to
using style sheets.

Closing Open Sections
You can close off section tags up to level N by calling the eval::[Section.setlevel(N)] system
macro. This is useful if you want to include a section composed of raw markup. The following example
includes a DocBook glossary division at the top section level (level 0):

ifdef::backend-docbook[]

eval::[Section.setlevel(0)]

+++++++++++++++++++++++++++++++
<glossary>
<title>Glossary</title>
<glossdiv>
...
</glossdiv>

</glossary>
+++++++++++++++++++++++++++++++
endif::backend-docbook[]

Validating Output Files
Use xmllint(1) to check the AsciiDoc generated markup is both well formed and valid. Here are some
examples:

$ xmllint --nonet --noout --valid docbook-file.xml
$ xmllint --nonet --noout --valid xhtml11-file.html
$ xmllint --nonet --noout --valid --html html4-file.html

The —valid option checks the file is valid against the document type's DTD, if the DTD is not installed in
your system's catalog then it will be fetched from its Internet location. If you omit the —valid option the
document will only be checked that it is well formed.

Glossary

Block element An AsciiDoc block element is a document entity composed of one or more
whole lines of text.

Inline element AsciiDoc inline elements occur within block element textual content, they
perform formatting and substitution tasks.

Formal element An AsciiDoc block element that has a BlockTitle. Formal elements are
normally listed in front or back matter, for example lists of tables, examples

AsciiDoc User Guide

81

and figures.

Verbatim element The word verbatim indicates that white space and line breaks in the source
document are to be preserved in the output document.

A. Migration Notes
Version 7 to version 8

• A new set of quotes has been introduced which may match inline text in existing documents — if they
do you'll need to escape the matched text with backslashes.

• The index entry inline macro syntax has changed — if your documents include indexes you may need
to edit them.

• Replaced a2x(1) --no-icons and --no-copy options with their negated equivalents: --icons and
--copy respectively. The default behavior has also changed — the use of icons and copying of icon and
CSS files must be specified explicitly with the --icons and --copy options.

The rationale for the changes can be found in the AsciiDoc CHANGELOG.

If you want to disable unconstrained quotes, the new alternative constrained quotes syntax and
the new index entry syntax then you can define the attribute asciidoc7compatible (for
example by using the -a asciidoc7compatible command-line option).

Version 6 to version 7
The changes that affect the most users relate to renamed and deprecated backends and command-line
syntax:

1. The html backend has been renamed html4.

2. The xhtml backend has been deprecated to xhtml-deprecated (use the new xhtml11 backend in
preference).

3. The use of CSS specific css and css-embedded backends has been dropped in favor of using attributes
(see the table below and xhtml backend attributes).

4. Deprecated features that emitted warnings in prior versions are no longer tolerated.

5. The command-line syntax for deleting (undefining) an attribute has changed from -a ^name to -a

name!.

Table A.1. Equivalent command-line syntax

AsciiDoc User Guide

82

Version 6 (old) Version 7 (new) Version 7 (backward
compatible)

-b html -b html4 -b html4

-b css -b xhtml11 -a linkcss -a
icons

-b xhtml-deprecated -a
css -a linkcss -a icons

-b css-embedded -b xhtml11 -a icons -b xhtml-deprecated -a
css -a icons

-b xhtml -b xhtml11 -b xhtml-deprecated

-b docbook-sgml -b docbook -a sgml -b docbook -a sgml

If you've customized version 6 distribution stylesheets then you'll need to either bring them in line with
the new ./stylesheets/xhtml11*.css class and id names or stick with the backward compatible
xhtml-deprecated backend.

Changes to configuration file syntax:

1. To undefine an attribute in the [attributes] section use name! instead of name (name now sets that
attribute to a blank string).

B. Packager Notes
Read the README and INSTALL files (in the distribution root directory) for install prerequisites and
procedures.

The distribution install.sh shell script is the canonical installation procedure and is the definitive
installation description. Here's a summary of the installation procedure:

• Unpack entire distribution tarball to /usr/share/asciidoc/.

• Move asciidoc.py to /usr/bin/; rename to asciidoc; if necessary modify shebang line; ensure
executable permissions are set.

• Move a2x to /usr/bin/; if necessary modify shebang line; ensure executable permissions are set.

• Move the ./*.conf files to /etc/asciidoc/.

• Move ./filters/{*.conf,*.py} to /etc/asciidoc/filters/.

• Move ./docbook-xsl/*.xsl to /etc/asciidoc/docbook-xsl/.

• Copy ./stylesheets/*.css to /etc/asciidoc/stylesheets/.

• Copy ./javascripts/*.js to /etc/asciidoc/javascripts/.

• Copy ./images/icons/* to /etc/asciidoc/images/icons/ (recursively including the icons

subdirectory and its contents).

AsciiDoc User Guide

83

• Compress the asciidoc(1) and ax2(1) man pages (./doc/*.1) with gzip(1) and move them to
/usr/share/man/man1/.

• If Vim is installed then install Vim syntax and filetype detection files.

Leaving stylesheets and images in /usr/share/asciidoc/ ensures the docs and example website are not
broken.

C. AsciiDoc Safe Mode
AsciiDoc safe mode skips potentially dangerous sections in AsciiDoc source files by inhibiting the
execution of arbitrary code or the inclusion of arbitrary files.

The safe mode is enabled by default and can only be disabled using the asciidoc(1) —unsafe

command-line option.

Safe mode constraints

• eval, sys and sys2 executable attributes and block macros are not executed.

• include::<filename>[] and include1::<filename>[] block macro files must reside inside the
parent file's directory.

• {include:<filename>} executable attribute files must reside inside the source document directory.

• Passthrough Blocks are dropped.

The safe mode is not designed to protect against unsafe AsciiDoc configuration files. Be
especially careful when:

1. Implementing filters.

2. Implementing elements that don't escape special characters.

3. Accepting configuration files from untrusted sources.

D. Installing FOP on Windows

1. Download latest FOP distribution from http://xml.apache.org/fop/.

2. Unzip to C:\bin.

AsciiDoc User Guide

84

http://xml.apache.org/fop/

3. Edit the distribution fop.bat file and put it in the search PATH:

set LOCAL_FOP_HOME=C:\bin\fop-0.20.5\

4. Download the JIMI image processing library from http://java.sun.com/products/jimi/.

5. Extract the JimiProClasses.jar library from the JIMI distribution and copy to the FOP ./lib

directory.

6. Edit the distribution fop.bat file again and add the JIMI library to LOCALCLASSPATH:

set LOCALCLASSPATH=%LOCALCLASSPATH%;%LIBDIR%\JimiProClasses.jar

7. You should now be able to run FOP from a DOS prompt — execute it without arguments to get a list
of command options:

> fop.bat

E. Installing FOP on Linux
Here's how I installed FOP on Fedora Core 1:

1. Download latest FOP distribution from http://xml.apache.org/fop/.

2. Install the FOP distribution:

$ su
cd /usr/local/lib
unzip ~srackham/tmp/fop-0.20.5-bin.zip
cp /usr/local/lib/fop-0.20.5/fop.sh /usr/local/bin
chmod +x /usr/local/bin/fop.sh

3. Edit the FOP start script fop.sh adding this line to the start of the script:

FOP_HOME=/usr/local/lib/fop-0.20.5

4. Download the JIMI image processing library from http://java.sun.com/products/jimi/.

5. Extract the JimiProClasses.jar library from the JIMI distribution and copy to the FOP lib

directory.

cp ~srackham/tmp/JimiProClasses.jar /usr/local/lib/fop-0.20.5/lib/

6. You should now be able to run FOP from a DOS prompt — execute it without arguments to get a list
of command options:

$ fop.sh

AsciiDoc User Guide

85

http://java.sun.com/products/jimi/
http://xml.apache.org/fop/
http://java.sun.com/products/jimi/

F. Installing Java on Windows
First check that Java is not already installed:

1. Open a DOS Command Prompt window.

2. Enter this command:

java -version

You should see something like this:

java version "1.4.2_01"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.2_01-b06)
Java HotSpot(TM) Client VM (build 1.4.2_01-b06, mixed mode)

If you don't Java is not installed and you need to:

1. Download the Java Runtime (JRE) for Windows from http://java.sun.com.

2. Install using the instructions on the download page.

G. Installing Java on Linux
Check Java is not already installed by entering the following command:

$ java -version

You should see something like this:

java version "1.4.2_01"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.2_01-b06)
Java HotSpot(TM) Client VM (build 1.4.2_01-b06, mixed mode)

If it's not already set you will need to set the JAVA_HOME environment variable. For example on Kubuntu
Breezy put the following line into /etc/profile:

export JAVA_HOME=/usr/lib/jvm/java-1.4.2-gcj-4.0-1.4.2.0/

H. Using AsciiDoc with non-English
Languages

AsciiDoc can process UTF-8 character sets but there are some things you need to be aware of:

AsciiDoc User Guide

86

http://java.sun.com

• If you are generating output documents using a DocBook toolchain then you should set the AsciiDoc
lang attribute to the appropriate language (it defaults to en (English)). This will ensure things like table
of contents, revision history, figure and table captions and admonition captions are output in the
specified language. For example:

$ a2x -a lang=es doc/article.txt

• If you are outputting html or xhtml directly from asciidoc(1) you'll need to set the various
*_caption attributes to match your target language. The easiest way is to create a language .conf file
(see the example lang-es.conf file that comes with the AsciiDoc distribution).

• asciidoc(1) automatically loads configuration files named like lang-<lang>.conf where <lang> is
a two letter language code that matches the current AsciiDoc lang attribute. See also Configuration File
Names and Locations.

• Some character sets display double-width characters (for example Japanese). As far as title underlines
are concerned they should be treated as single character. If you think this looks untidy so you may
prefer to use the single line title format.

I. ASCIIMathML Support
ASCIIMathML [http://www1.chapman.edu/~jipsen/mathml/asciimath.html] is a clever JavaScript written
by Peter Jipsen that transforms mathematical formulae written in plain text to standard mathematical
notation on an HTML page.

To enable ASCIIMathML support on the xhtml11 backend include the -a asciimath command-line
option. Here's what the asciimath attribute does:

• Embeds the ASCIIMathML.js script in the output document (links it if -a linkcss has been specified).

• Escapes ASCIIMathML delimiters.

When entering ASCIIMathML formulas you must enclose them inside double-dollar passthroughs (this is
necessary because ASCIIMathML characters clash with AsciiDoc formatting characters). The
double-dollar passthrough has the bonus of also escaping special characters so the output document is
valid XHTML. You can see an ASCIIMathML example at
http://www.methods.co.nz/asciidoc/asciimath.html, the same example can be found in the AsciiDoc
distribution ./doc directory.

• See the ASCIIMathML [http://www1.chapman.edu/~jipsen/mathml/asciimath.html] website
for ASCIIMathML documentation and the latest version.

• If you use Mozilla you need to install the required math fonts
[http://www.mozilla.org/projects/mathml/fonts/].

• If you use Microsoft Internet Explorer 6 you need to install MathPlayer
[http://www.dessci.com/en/products/mathplayer/].

AsciiDoc User Guide

87

http://www1.chapman.edu/~jipsen/mathml/asciimath.html
http://www1.chapman.edu/~jipsen/mathml/asciimath.html
http://www.methods.co.nz/asciidoc/asciimath.html
http://www1.chapman.edu/~jipsen/mathml/asciimath.html
http://www1.chapman.edu/~jipsen/mathml/asciimath.html
http://www.mozilla.org/projects/mathml/fonts/
http://www.mozilla.org/projects/mathml/fonts/
http://www.dessci.com/en/products/mathplayer/
http://www.dessci.com/en/products/mathplayer/

J. Vim Syntax Highlighter
The AsciiDoc ./vim/ distribution directory contains Vim syntax highlighter and filetype detection scripts
for AsciiDoc. Syntax highlighting makes it much easier to spot AsciiDoc syntax errors.

If Vim is installed on your system the AsciiDoc installer (install.sh) will automatically install the vim
scripts in the Vim global configuration directory (/etc/vim).

You can also turn on syntax highlighting by adding the following line to the end of you AsciiDoc source
files:

// vim: set syntax=asciidoc:

Dag Wieers has implemented an alternative Vim syntax file for AsciiDoc which can be found
here http://svn.rpmforge.net/svn/trunk/tools/asciidoc-vim/.

Emacs users: The *Nix Power Tools project [http://xpt.sourceforge.net/] has released an
AsciiDoc syntax highlighter for emacs [http://xpt.sourceforge.net/tools/doc-mode/].

Limitations
The current implementation does a reasonable job but on occasions gets things wrong. This list of
limitations also discusses how to work around the problems:

• Indented lists with preceding blank lines are sometimes mistaken for literal (indented) paragraphs. You
can work around this by deleting the preceding blank line, or inserting a space in the preceding blank
lines, or putting a list continuation character (+) in the preceding blank line.

• Nested text formatting is highlighted according to the outer format.

• Text formatting is not highlighted inside titles or attribute lists.

• Most escaped inline elements will be highlighted.

• Unterminated quotes are highlighted, for example 'tis would be seen as the start of emphasized text.
In this case work-around would be to comment out asciidocEmphasized2 and use the
(asciidocEmphasized) underscored for emphasis. As a damage control measure quoted patterns
always terminate at a blank line. This problem is usually ameliorated by the fact that characters such as
~, +, ^ and _ will normally occur inside monospaced quotes (unless they are used for quoting), for
example ~/projects.

• If a closing block delimiter is not preceded by a blank line it is sometimes mistaken for a title
underline. A workaround is to insert a blank line before the closing delimiter.

• If a list block delimiter is mistaken for a title underline precede it with a blank line.

• Tables are terminated by a blank line — use a space character on blank lines within your table.

AsciiDoc User Guide

88

http://svn.rpmforge.net/svn/trunk/tools/asciidoc-vim/
http://xpt.sourceforge.net/
http://xpt.sourceforge.net/
http://xpt.sourceforge.net/tools/doc-mode/
http://xpt.sourceforge.net/tools/doc-mode/

• Lines within a paragraph beginning with a period will be highlighted as block titles. For example:

.chm file.

To work around this restriction move the last word of the previous line to the start of the current
(although words starting with a period should probably be quoted monospace which would also get
around the problem).

Sometimes incorrect highlighting is caused by preceding lines that appear blank but contain
white space characters.

AsciiDoc User Guide

89

	AsciiDoc User Guide
	Table of Contents
	Introduction
	Getting Started
	Installing AsciiDoc
	Example AsciiDoc Documents

	AsciiDoc Document Types
	article
	book
	manpage

	AsciiDoc Backends
	docbook
	xhtml11
	Stylesheets

	html4
	linuxdoc
	latex

	Document Structure
	Block Elements
	Header
	Preamble
	Sections
	Special Sections

	Inline Elements

	Document Processing
	Text Formatting
	Quoted Text
	Constrained and Unconstrained Quotes
	Constrained quotes
	Unconstrained quotes

	Inline Passthroughs
	Superscripts and Subscripts
	Line Breaks (HTML/XHTML)
	Rulers (HTML/XHTML)
	Tabs
	Replacements
	Special Words

	Titles
	Two line titles
	One line titles

	BlockTitles
	BlockId Element
	Paragraphs
	Default Paragraph
	Literal Paragraph
	Admonition Paragraphs
	Admonition Icons and Captions

	Delimited Blocks
	Predefined Delimited Blocks
	Listing Blocks
	Literal Blocks
	SidebarBlocks
	Comment Blocks
	Passthrough Blocks
	Quote Blocks
	Example Blocks
	Admonition Blocks

	Lists
	Bulleted and Numbered Lists
	Vertical Labeled Lists
	Horizontal Labeled Lists
	Question and Answer Lists
	Glossary Lists
	Bibliography Lists
	List Item Continuation
	List Block

	Footnotes
	Indexes
	Callouts
	Implementation Notes
	Including callouts in included code

	Macros
	Inline Macros
	URLs
	Internal Cross References
	anchor
	xref

	Linking to Local Documents
	Images

	Block Macros
	Block Identifier
	Images
	Comment Lines

	System Macros
	Include Macros
	Conditional Inclusion Macros
	eval, sys and sys2 System Macros
	Template System Macro

	Macro Definitions

	Tables
	Example Tables
	AsciiDoc Table Block Elements
	Ruler
	Row and Data Elements
	Underline
	Attribute List
	Markup Attributes

	Manpage Documents
	Document Header
	The NAME Section
	The SYNOPSIS Section

	Configuration Files
	Configuration File Format
	Markup Template Sections
	Special Sections
	Miscellaneous
	Titles
	Tags
	Attributes Section
	Special Characters
	Quoted Text
	Special Words
	Replacements

	Configuration File Names and Locations

	Document Attributes
	Attribute Entries
	Attribute Lists
	Macro Attribute lists
	AttributeList Element

	Attribute References
	Simple Attributes References
	Conditional Attribute References
	Conditional attribute examples

	System Attribute References

	Intrinsic Attributes
	Block Element Definitions
	Styles
	Paragraphs
	Delimited Blocks
	Lists
	Tables

	Filters
	Filter Search Paths
	Filter Configuration Files
	Code Filter
	Source Code Highlighter Filter
	Music Filter

	Converting DocBook to other file formats
	a2x Toolchain Wrapper
	Toolchain Components
	AsciiDoc DocBook XSL Drivers
	FOP

	Generating Plain Text Files
	XML and Character Sets
	PDF Fonts

	Help Commands
	Customizing Help

	Tips and Tricks
	Know Your Editor
	Vim Commands for Formatting AsciiDoc
	Text Wrap Paragraphs
	Format Lists
	Indent Paragraphs
	Example ~/.vimrc File

	Troubleshooting
	Gotchas
	Combining Separate Documents
	Processing Document Sections Separately
	Processing Document Chunks
	Badges in HTML Page Footers
	Pretty Printing AsciiDoc Output
	Supporting Minor DocBook DTD Variations
	Shipping Stand-alone AsciiDoc Source
	Inserting Blank Space
	Closing Open Sections
	Validating Output Files

	Glossary
	A. Migration Notes
	Version 7 to version 8
	Version 6 to version 7

	B. Packager Notes
	C. AsciiDoc Safe Mode
	D. Installing FOP on Windows
	E. Installing FOP on Linux
	F. Installing Java on Windows
	G. Installing Java on Linux
	H. Using AsciiDoc with non-English Languages
	I. ASCIIMathML Support
	J. Vim Syntax Highlighter
	Limitations

